Assembly and Speed in Ion-Exchange-Based Modular Phoretic Microswimmers

We report an experimental study on ion-exchange-based modular microswimmers in low-salt water. Cationic ion-exchange particles and passive cargo particles assemble into self-propelling complexes, showing self-propulsion at speeds of several micrometers per second over extended distances and times. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-04, Vol.33 (14), p.3450-3457
Hauptverfasser: Niu, Ran, Botin, Denis, Weber, Julian, Reinmüller, Alexander, Palberg, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report an experimental study on ion-exchange-based modular microswimmers in low-salt water. Cationic ion-exchange particles and passive cargo particles assemble into self-propelling complexes, showing self-propulsion at speeds of several micrometers per second over extended distances and times. We quantify the assembly and speed of the complexes for different combinations of ion-exchange particles and cargo particles, substrate types, salt types and concentrations, and cell geometries. Irrespective of the experimental boundary conditions, we observe a regular development of the assembly shape with increasing number of cargo. Moreover, the swimming speed increases stepwise upon increasing the number of cargo and then saturates at a maximum speed, indicating the active role of cargo in modular swimming. We propose a geometric model of self-assembly to describe the experimental observations in a qualitative way. Our study also provides some constraints for future theoretical modeling and simulation.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.7b00288