Airborne pollen characteristics and the influence of temperature and precipitation in Raleigh, North Carolina, USA (1999–2012)
The incidence of allergic diseases has been increasing in recent decades, in part due to increased exposure to aeroallergens, particularly pollen. Allergic diseases have a major burden on the health care system, with annual costs in the USA alone exceeding $30 billion. There is evidence that the pro...
Gespeichert in:
Veröffentlicht in: | Aerobiologia 2016-12, Vol.32 (4), p.683-696 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The incidence of allergic diseases has been increasing in recent decades, in part due to increased exposure to aeroallergens, particularly pollen. Allergic diseases have a major burden on the health care system, with annual costs in the USA alone exceeding $30 billion. There is evidence that the production of aeroallergens, including pollen, is increasing in response to environmental and climatic change, which has important implications for the treatment of allergy sufferers. In this study, pollen data from a Rotorod sampler in Raleigh, North Carolina, was used to characterize and examine trends in the atmospheric pollen seasons for trees, grasses, and weeds over the period 1999–2012. The influence of mean monthly antecedent and concurrent temperature and precipitation on the timing, duration, and severity of the pollen seasons was assessed using Pearson’s product-moment correlation coefficients and multiple linear regression models. An increasing trend was noted in seasonal tree pollen concentrations, while seasonal and peak weed pollen concentrations declined over time. The atmospheric pollen seasons for grasses and weeds trended toward earlier start dates and longer durations, while the tree pollen season trended toward an earlier end date. Peak daily tree pollen concentrations were strongly associated with antecedent temperature and precipitation, while peak daily grass pollen concentrations were strongly associated with concurrent precipitation. The strongest relationships between climate and weed pollen were associated with the timing and duration of the pollen season, with drier antecedent and warmer concurrent conditions tied to longer weed pollen seasons. |
---|---|
ISSN: | 0393-5965 1573-3025 |
DOI: | 10.1007/s10453-016-9442-6 |