Synergistic Effects of n-Hexane Fraction of Parkia biglobosa (Jacq.) Bark Extract and Selected Antibiotics on Bacterial Isolates

The incidence of resistance to commonly used antimicrobial agents by microbial pathogens demands increased effort in the development of effective ways of treating infections and diseases. The n-hexane fraction of lyophilized crude bark extract of Parkia biglobosa (Jacq.) was prepared and, in combina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2017, Vol.9 (2), p.228-228
Hauptverfasser: Abioye, Oluwatayo E, Akinpelu, David A, Okoh, Anthony I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The incidence of resistance to commonly used antimicrobial agents by microbial pathogens demands increased effort in the development of effective ways of treating infections and diseases. The n-hexane fraction of lyophilized crude bark extract of Parkia biglobosa (Jacq.) was prepared and, in combination with selected antibiotics, assayed for antimicrobial activity against some selected bacterial pathogens using time-kill assay. Protein leakage analysis of the combined agents was performed using Bradford protein quantification method. Determination of active compounds present in the n-hexane fraction was done using Fourier Transform Infrared Spectroscopy (FTIR). While time-kill assay detected 43.33% synergy; 56.67% indifference and no antagonism at 1/2 × minimum inhibitory concentration (MIC), 1 × MIC exhibited 55% synergy, 45% indifference and no antagonism. Protein leakages from the cells of selected bacteria ranged from 1.20 µg/mL to 256.93 µg/mL. The presence of a phenyl group, an aromatic ring and phenolic compounds in the n-hexane fraction was confirmed at 2162 cm−1–2020 cm−1, 1605 cm−1–1533 cm−1 and 1438 cm−1–1444 cm−1 spectra peaks, respectively. The observed antibiotic−n-hexane fraction synergistic interaction revealed the improved antibacterial activity of the selected antibiotics. Hence, exploration of a combination of antibiotics with plant secondary metabolites is hereby advocated in the global quest for means of combating infectious diseases caused by multidrug-resistant pathogens.
ISSN:2071-1050
2071-1050
DOI:10.3390/su9020228