One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions

[Display omitted] A facile, green, economical approach was designed to deposit palladium nanoparticles on magnetic reduced graphene oxide nanosheets (Pd-Fe3O4/rGO) via a one-pot hydrothermal synthesis method. The prepared Pd-Fe3O4/rGO nanocomposites were thoroughly characterized by Transmission elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2017-07, Vol.497, p.83-92
Hauptverfasser: Fu, Wenzhi, Zhang, Zhuqing, Zhuang, Peiyuan, Shen, Jianfeng, Ye, Mingxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] A facile, green, economical approach was designed to deposit palladium nanoparticles on magnetic reduced graphene oxide nanosheets (Pd-Fe3O4/rGO) via a one-pot hydrothermal synthesis method. The prepared Pd-Fe3O4/rGO nanocomposites were thoroughly characterized by Transmission electron microscopy, Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. Importantly, the highly efficient catalytic property of the as-obtained Pd-Fe3O4/rGO catalyst was demonstrated for the Suzuki-Miyaura coupling reaction and Mizoroki-Heck coupling reaction. Significantly, the Suzuki-Miyaura coupling reactions could be efficiently performed in an environmentally friendly aqueous solution with no need for further additives. Besides, the nanocomposites could be conveniently separated from reaction system with an external permanent magnet for recycling and the inherent catalytic activity of the nanocomposites did not exacerbate after six repeated applications.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2017.02.063