The role of Runx2 in facilitating autophagy in metastatic breast cancer cells

Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt‐related transcription factor, Runx2, promotes cell survival und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2018-01, Vol.233 (1), p.559-571
Hauptverfasser: Tandon, Manish, Othman, Ahmad H., Ashok, Vivek, Stein, Gary S., Pratap, Jitesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast cancer metastases cause significant patient mortality. During metastases, cancer cells use autophagy, a catabolic process to recycle nutrients via lysosomal degradation, to overcome nutritional stress for their survival. The Runt‐related transcription factor, Runx2, promotes cell survival under metabolic stress, and regulates breast cancer progression and bone metastases. Here, we identify that Runx2 enhances autophagy in metastatic breast cancer cells. We defined Runx2 function in cellular autophagy by monitoring microtubule‐associated protein light chain (LC3B‐II) levels, an autophagy‐specific marker. The electron and confocal microscopic analyses were utilized to identify alterations in autophagic vesicles. The Runx2 knockdown cells accumulate LC3B‐II protein and autophagic vesicles due to reduced turnover. Interestingly, Runx2 promotes autophagy by enhancing trafficking of LC3B vesicles. Our mechanistic studies revealed that Runx2 promotes autophagy by increasing acetylation of α‐tubulin sub‐units of microtubules. Inhibiting autophagy decreased cell adhesion and survival of Runx2 knockdown cells. Furthermore, analysis of LC3B protein in clinical breast cancer specimens and tumor xenografts revealed significant association between high Runx2 and low LC3B protein levels. Our studies reveal a novel regulatory mechanism of autophagy via Runx2 and provide molecular insights into the role of autophagy in metastatic cancer cells. We demonstrate a novel function of Runx2 in facilitating autophagy by altering cytoskeletal elements during cellular stress conditions such as nutrient deprivation. Our results in bone metastatic MDA‐MB‐231 breast cancer cells show that Runx2 promotes autophagy via α‐tubulin acetylation and autophagosome trafficking. Since autophagy promotes tumor cell adhesion, the Runx2‐mediated autophagy supporting cell adhesion highlights its function in metastatic breast cancer cell survival.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.25916