Oxidative Polyoxometalates Modified Graphitic Carbon Nitride for Visible-Light CO2 Reduction

Developing a photocatalysis system for converting CO2 to valuable fuels or chemicals is a promising strategy to address global warming and fossil fuel consumption. Exploring photocatalysts with high-performance and low-cost has been two ultimate goals toward photoreduction of CO2. Herein, noble-meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-04, Vol.9 (13), p.11689-11695
Hauptverfasser: Zhou, Jie, Chen, Weichao, Sun, Chunyi, Han, Lu, Qin, Chao, Chen, Mengmeng, Wang, Xinlong, Wang, Enbo, Su, Zhongmin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing a photocatalysis system for converting CO2 to valuable fuels or chemicals is a promising strategy to address global warming and fossil fuel consumption. Exploring photocatalysts with high-performance and low-cost has been two ultimate goals toward photoreduction of CO2. Herein, noble-metal-free polyoxometalates (Co4) with oxidative ability was first introduced into g-C3N4 resulted in inexpensive hybrid materials (Co4@g-C3N4) with staggered band alignment. The staggered composited materials show a higher activity of CO2 reduction than bare g-C3N4. An optimized Co4@g-C3N4 hybrid sample exhibited a high yield (107 μmol g–1 h–1) under visible-light irradiation (λ ≥ 420 nm), meanwhile maintaining high selectivity for CO production (94%). After 10 h of irradiation, the production of CO reached 896 μmol g–1. Mechanistic studies revealed the introduction of Co4 not only facilitate the charge transfer of g-C3N4 but greatly increased the surface catalytic oxidative ability. This work creatively combined g-C3N4 with oxidative polyoxometalates which provide novel insights into the design of low-cost photocatalytic materials for CO2 reduction.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b01721