Loss of luteotropic prostaglandin E plays an important role in the regulation of luteolysis in women
Do intraluteal prostaglandins (PG) contribute to luteal regulation in women? Prostaglandin E (PGE), which is produced in human granulosa-lutein cells stimulated with luteotropic hCG, exerts similar luteotropic effects to hCG, and the expression of PG synthetic and metabolic enzymes in the human CL i...
Gespeichert in:
Veröffentlicht in: | Molecular human reproduction 2017-05, Vol.23 (5), p.271-281 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Do intraluteal prostaglandins (PG) contribute to luteal regulation in women?
Prostaglandin E (PGE), which is produced in human granulosa-lutein cells stimulated with luteotropic hCG, exerts similar luteotropic effects to hCG, and the expression of PG synthetic and metabolic enzymes in the human CL is driven toward less PGE but more prostaglandin F (PGF) during luteolysis.
Uterine PGF is a major luteolysin in many non-primate species but not in women. Increases in the PGF synthase, aldo-ketoreductase family one member C3 (AKR1C3), have been observed in the CL of marmoset monkeys during luteolysis. PGE prevents spontaneous or induced luteolysis in domestic animals.
Human CL tissues staged as the early-luteal (n = 6), mid-luteal (n = 6), late-luteal (n = 5) and menstrual (n = 3) phases were obtained at the time of hysterectomy for benign gynecological conditions. Luteinized granulosa cells (LGCs) were purified from follicular fluids obtained from patients undergoing assisted conception.
Upon collection, one half of the CL was snap-frozen and the other was fixed with formalin and processed for immunohistochemical analysis of a PGE synthase (PTGES). Quantitative RT-PCR was employed to examine changes in the mRNA abundance of PG synthetic and metabolic enzymes, steroidogenic enzymes, and luteolytic molecules in the staged human CL and in human LGCs in vitro treated with hCG, PGE and PGF. A PGE withdrawal experiment was also conducted in order to reveal the effects of the loss of PGE in LGCs. Progesterone concentrations in the culture medium were measured.
The key enzyme for PGE synthesis, PTGES mRNA was abundant in the functional CL during the mid-luteal phase (P < 0.01), while mRNA abundance for genes involved in PGF synthesis (AKR1B1 and AKR1C1-3) increased in the CL during the late-luteal phase and menstruation (P < 0.05-0.001). PTGES mRNA expression positively correlated with that of 3β-hydroxysteroid dehydrogenase (HSD3B1; r = 0.7836, P < 0.001), while AKR1C3 expression inversely correlated with that of HSD3B1 (r = -0.7514, P = 0.0012) and PTGES (r = -0.6923, P = 0.0042). PGE exerted similar effects to hCG-promoting genes, such as steroidogenic acute regulatory protein (STAR) and HSD3B1, to produce progesterone and luteotropic PGE, suppress PGF synthetic enzymes and down-regulate luteolytic molecules such as βA- and βB-inhibin subunits (INHBA and INHBB) and bone morphogenetic proteins (BMP2, BMP4 and BMP6). PGE withdrawal resulted in reductions in the enzym |
---|---|
ISSN: | 1360-9947 1460-2407 |
DOI: | 10.1093/molehr/gax011 |