A novel mode of RBD-protein recognition in the Y14-Mago complex
Y14 and Mago are conserved eukaryotic proteins that associate with spliced mRNAs in the nucleus and remain associated at exon junctions during and after nuclear export. In the cytoplasm, Y14 is involved in mRNA quality control via the nonsense-mediated mRNA decay (NMD) pathway and, together with Mag...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2003-06, Vol.10 (6), p.433-439 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Y14 and Mago are conserved eukaryotic proteins that associate with spliced mRNAs in the nucleus and remain associated at exon junctions during and after nuclear export. In the cytoplasm, Y14 is involved in mRNA quality control via the nonsense-mediated mRNA decay (NMD) pathway and, together with Mago, is involved in localization of
osk
(oskar) mRNA. We have determined the crystal structure of the complex between
Drosophila melanogaster
Y14 and Mago at a resolution of 2.5 Å. The structure reveals an atypical mode of protein–protein recognition mediated by an RNA-binding domain (RBD). Instead of binding RNA, the RBD of Y14 engages its RNP1 and RNP2 motifs to bind Mago. Using structure-guided mutagenesis, we show that Mago is also a component of the NMD pathway, and that its association with Y14 is essential for function. Heterodimerization creates a single structural platform that interacts with the NMD machinery via phylogenetically conserved residues. |
---|---|
ISSN: | 1072-8368 1545-9993 2331-365X 1545-9985 |
DOI: | 10.1038/nsb926 |