United States Department of Agriculture-Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control
A group of 133 isolates of the cotton wilt pathogen Fusarium oxysporum Schlecht f sp vasinfectum (Atk) Sny & Hans, representing five races and 20 vegetative compatibility groups within race 1 were used to determine the identity, biosynthetic regulation and taxonomic distribution of polyketide to...
Gespeichert in:
Veröffentlicht in: | Pest management science 2003-06, Vol.59 (6-7), p.736-747 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A group of 133 isolates of the cotton wilt pathogen Fusarium oxysporum Schlecht f sp vasinfectum (Atk) Sny & Hans, representing five races and 20 vegetative compatibility groups within race 1 were used to determine the identity, biosynthetic regulation and taxonomic distribution of polyketide toxins produced by this pathogen. All isolates of F oxysporum f sp vasinfectum produced and secreted the nonaketide naphthazarin quinones, bikaverin and norbikaverin. Most isolates of race 1 (previously denoted as races 1, 2 and 6; and also called race A) also synthesized the heptaketide naphthoquinones, nectriafurone, anhydrofusarubin lactol and 5‐O‐methyljavanicin. Nine avirulent isolates of F oxysporum from Upland cotton roots, three isolates of race 3 of F oxysporum f sp vasinfectum, and four isolates of F oxysporum f sp vasinfectum from Australia, all of which previously failed to cause disease of Upland cotton (Gossypium hirsutum L) in stem‐puncture assays, also failed to synthesize or secrete more than trace amounts of the heptaketide compounds. These results indicate that the heptaketides may have a unique role in the virulence of race 1 to Upland cotton. The synthesis of all polyketide toxins by ATCC isolate 24 908 of F oxysporum f sp vasinfectum was regulated by pH, carbon/nitrogen ratios, and availability of calcium in media. Synthesis was greatest below pH 7.0 and increased progressively as carbon/nitrogen ratios were increased by decreasing the amounts of nitrogen added to media. The nonaketides were the major polyketides accumulated in synthetic media at pH 4.5 and below, whereas the heptaketides were predominant at pH 5.0 and above. The heptaketides were the major polyketides formed when 10 F oxysporum f sp vasinfectum race 1 isolates were grown on sterilized stems of Fusarium wilt‐susceptible cotton cultivars, but these compounds were not produced on sorghum grain cultures. Both groups of polyketide toxins were apparently secreted by F oxysporum f sp vasinfectum, since half of the toxin in 2‐day‐old shake culture was present in the supernatant. Secretion was enhanced by calcium. Glutamine and glutamic acid inhibited both nonaketide and heptaketide syntheses, even at low nitrogen levels, indicating that glutamine may be a key regulator of the polyketide pathways. The implications of these findings for control of Fusarium wilt of cotton by new technologies are discussed. Published in 2003 for SCI by John Wiley & Sons, Ltd. |
---|---|
ISSN: | 1526-498X 1526-4998 |
DOI: | 10.1002/ps.713 |