Molecular Pathways: Evaluating the Potential for B7-H4 as an Immunoregulatory Target
With the clinical success of CTLA-4 and PD-1 blockade in treating malignancies, there is tremendous interest in finding new ways to augment antitumor responses by targeting other inhibitory molecules. In this review, we describe one such molecule. B7-H4, a member of the B7 family of immunoregulatory...
Gespeichert in:
Veröffentlicht in: | Clinical cancer research 2017-06, Vol.23 (12), p.2934-2941 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the clinical success of CTLA-4 and PD-1 blockade in treating malignancies, there is tremendous interest in finding new ways to augment antitumor responses by targeting other inhibitory molecules. In this review, we describe one such molecule. B7-H4, a member of the B7 family of immunoregulatory proteins, inhibits T cell proliferation and cytokine production through ligation of an unknown receptor expressed by activated T cells. Notably, B7-H4 protein expression is observed in a high proportion of patients' tumors across a wide variety of malignancies. This high expression by tumors in combination with its low or absent protein expression in normal tissues makes B7-H4 an attractive immunotherapeutic target. Preclinical investigation into B7-H4-specific chimeric antigen receptor (CAR) T cells, antibody-mediated blockade of B7-H4, and anti-B7-H4 drug conjugates has shown antitumor efficacy in mouse models. The first clinical trials have been completed to assess the safety and efficacy of a B7-H4 fusion protein in ameliorating rheumatoid arthritis.
. |
---|---|
ISSN: | 1078-0432 1557-3265 |
DOI: | 10.1158/1078-0432.CCR-15-2440 |