ON THE NON-TRIVIALITY OF THE -ADIC ABEL–JACOBI IMAGE OF GENERALISED HEEGNER CYCLES MODULO , II: SHIMURA CURVES

Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$ . The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2017-02, Vol.16 (1), p.189-222
1. Verfasser: Burungale, Ashay A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 1
container_start_page 189
container_title Journal of the Institute of Mathematics of Jussieu
container_volume 16
creator Burungale, Ashay A
description Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$ . The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-product of a CM abelian surface. Let $p$ be an odd prime split in $K/\mathbf{Q}$ . We prove the non-triviality of the $p$ -adic Abel–Jacobi image of generalised Heegner cycles modulo $p$ over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ . The result implies the non-triviality of the generalised Heegner cycles in the top graded piece of the coniveau filtration on the Chow group, and proves a higher weight analogue of Mazur’s conjecture. In the case of weight 2, the result provides a refinement of the results of Cornut–Vatsal and Aflalo–Nekovář on the non-triviality of Heegner points over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ .
doi_str_mv 10.1017/S147474801500016X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880032628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4319618801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1518-5fcaf32286f80d374254eda6e0a50ec38fa0a5e964bb825803235fc284439333</originalsourceid><addsrcrecordid>eNplkc9OwkAQxjdGExF9AG-bePFgdf9028VbLUu7prRJW4icmlK2CQQodOXgzXfwBXwWH8UncQFPmjnMNzO_mUzyAXCN0T1G2H3IsO2a4AgzhBB2Xk5Ax7SYRRFFpwdtW_v5ObjQeoEQcQjDHbBNYpiHAsZJbOWpHEsvkvkEJoND1_L60ofek4i-3z-ePT95klAOvUDsgUDEIjV4JvowFCIwFfQnfiQyOEz6oyiBd1DKR5iFcjhKva9Pf5SORXYJzupyqdXVb-6CfCByP7SiJJC-F1kVZphbrK7KmhLCnZqjGXVtwmw1Kx2FSoZURXldGqV6jj2dcsI4ooSaHcJtm_YopV1wezy7aZvtTunXYjXXlVouy7VqdrrAnCOz4xBu0Js_6KLZtWvznKFchrGLXWYofKSqttG6VXWxaeersn0rMCr2HhT_PKA_x11u6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875117175</pqid></control><display><type>article</type><title>ON THE NON-TRIVIALITY OF THE -ADIC ABEL–JACOBI IMAGE OF GENERALISED HEEGNER CYCLES MODULO , II: SHIMURA CURVES</title><source>Cambridge Journals</source><creator>Burungale, Ashay A</creator><creatorcontrib>Burungale, Ashay A</creatorcontrib><description>Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$ . The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-product of a CM abelian surface. Let $p$ be an odd prime split in $K/\mathbf{Q}$ . We prove the non-triviality of the $p$ -adic Abel–Jacobi image of generalised Heegner cycles modulo $p$ over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ . The result implies the non-triviality of the generalised Heegner cycles in the top graded piece of the coniveau filtration on the Chow group, and proves a higher weight analogue of Mazur’s conjecture. In the case of weight 2, the result provides a refinement of the results of Cornut–Vatsal and Aflalo–Nekovář on the non-triviality of Heegner points over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ .</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S147474801500016X</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Analogue ; Filtration ; Mathematical analysis ; Theoretical mathematics</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2017-02, Vol.16 (1), p.189-222</ispartof><rights>Cambridge University Press 2015. This is a work of the U.S. Government and is not subject to copyright protection in the United States.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1518-5fcaf32286f80d374254eda6e0a50ec38fa0a5e964bb825803235fc284439333</citedby><cites>FETCH-LOGICAL-c1518-5fcaf32286f80d374254eda6e0a50ec38fa0a5e964bb825803235fc284439333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Burungale, Ashay A</creatorcontrib><title>ON THE NON-TRIVIALITY OF THE -ADIC ABEL–JACOBI IMAGE OF GENERALISED HEEGNER CYCLES MODULO , II: SHIMURA CURVES</title><title>Journal of the Institute of Mathematics of Jussieu</title><description>Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$ . The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-product of a CM abelian surface. Let $p$ be an odd prime split in $K/\mathbf{Q}$ . We prove the non-triviality of the $p$ -adic Abel–Jacobi image of generalised Heegner cycles modulo $p$ over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ . The result implies the non-triviality of the generalised Heegner cycles in the top graded piece of the coniveau filtration on the Chow group, and proves a higher weight analogue of Mazur’s conjecture. In the case of weight 2, the result provides a refinement of the results of Cornut–Vatsal and Aflalo–Nekovář on the non-triviality of Heegner points over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ .</description><subject>Analogue</subject><subject>Filtration</subject><subject>Mathematical analysis</subject><subject>Theoretical mathematics</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkc9OwkAQxjdGExF9AG-bePFgdf9028VbLUu7prRJW4icmlK2CQQodOXgzXfwBXwWH8UncQFPmjnMNzO_mUzyAXCN0T1G2H3IsO2a4AgzhBB2Xk5Ax7SYRRFFpwdtW_v5ObjQeoEQcQjDHbBNYpiHAsZJbOWpHEsvkvkEJoND1_L60ofek4i-3z-ePT95klAOvUDsgUDEIjV4JvowFCIwFfQnfiQyOEz6oyiBd1DKR5iFcjhKva9Pf5SORXYJzupyqdXVb-6CfCByP7SiJJC-F1kVZphbrK7KmhLCnZqjGXVtwmw1Kx2FSoZURXldGqV6jj2dcsI4ooSaHcJtm_YopV1wezy7aZvtTunXYjXXlVouy7VqdrrAnCOz4xBu0Js_6KLZtWvznKFchrGLXWYofKSqttG6VXWxaeersn0rMCr2HhT_PKA_x11u6Q</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Burungale, Ashay A</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170201</creationdate><title>ON THE NON-TRIVIALITY OF THE -ADIC ABEL–JACOBI IMAGE OF GENERALISED HEEGNER CYCLES MODULO , II: SHIMURA CURVES</title><author>Burungale, Ashay A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1518-5fcaf32286f80d374254eda6e0a50ec38fa0a5e964bb825803235fc284439333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analogue</topic><topic>Filtration</topic><topic>Mathematical analysis</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burungale, Ashay A</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burungale, Ashay A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE NON-TRIVIALITY OF THE -ADIC ABEL–JACOBI IMAGE OF GENERALISED HEEGNER CYCLES MODULO , II: SHIMURA CURVES</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>189</spage><epage>222</epage><pages>189-222</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$ . The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-product of a CM abelian surface. Let $p$ be an odd prime split in $K/\mathbf{Q}$ . We prove the non-triviality of the $p$ -adic Abel–Jacobi image of generalised Heegner cycles modulo $p$ over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ . The result implies the non-triviality of the generalised Heegner cycles in the top graded piece of the coniveau filtration on the Chow group, and proves a higher weight analogue of Mazur’s conjecture. In the case of weight 2, the result provides a refinement of the results of Cornut–Vatsal and Aflalo–Nekovář on the non-triviality of Heegner points over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ .</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S147474801500016X</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1474-7480
ispartof Journal of the Institute of Mathematics of Jussieu, 2017-02, Vol.16 (1), p.189-222
issn 1474-7480
1475-3030
language eng
recordid cdi_proquest_miscellaneous_1880032628
source Cambridge Journals
subjects Analogue
Filtration
Mathematical analysis
Theoretical mathematics
title ON THE NON-TRIVIALITY OF THE -ADIC ABEL–JACOBI IMAGE OF GENERALISED HEEGNER CYCLES MODULO , II: SHIMURA CURVES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20NON-TRIVIALITY%20OF%20THE%20-ADIC%20ABEL%E2%80%93JACOBI%20IMAGE%20OF%20GENERALISED%20HEEGNER%20CYCLES%20MODULO%20,%20II:%20SHIMURA%C2%A0CURVES&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Burungale,%20Ashay%20A&rft.date=2017-02-01&rft.volume=16&rft.issue=1&rft.spage=189&rft.epage=222&rft.pages=189-222&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S147474801500016X&rft_dat=%3Cproquest_cross%3E4319618801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875117175&rft_id=info:pmid/&rfr_iscdi=true