ON THE NON-TRIVIALITY OF THE -ADIC ABEL–JACOBI IMAGE OF GENERALISED HEEGNER CYCLES MODULO , II: SHIMURA CURVES

Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$ . The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2017-02, Vol.16 (1), p.189-222
1. Verfasser: Burungale, Ashay A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generalised Heegner cycles are associated to a pair of an elliptic newform and a Hecke character over an imaginary quadratic extension $K/\mathbf{Q}$ . The cycles live in a middle-dimensional Chow group of a Kuga–Sato variety arising from an indefinite Shimura curve over the rationals and a self-product of a CM abelian surface. Let $p$ be an odd prime split in $K/\mathbf{Q}$ . We prove the non-triviality of the $p$ -adic Abel–Jacobi image of generalised Heegner cycles modulo $p$ over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ . The result implies the non-triviality of the generalised Heegner cycles in the top graded piece of the coniveau filtration on the Chow group, and proves a higher weight analogue of Mazur’s conjecture. In the case of weight 2, the result provides a refinement of the results of Cornut–Vatsal and Aflalo–Nekovář on the non-triviality of Heegner points over the $\mathbf{Z}_{p}$ -anticyclotomic extension of  $K$ .
ISSN:1474-7480
1475-3030
DOI:10.1017/S147474801500016X