Charged quantum dot micropillar system for deterministic light-matter interactions
Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as c...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-06, Vol.93 (24), Article 241409 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Physical review. B |
container_volume | 93 |
creator | Androvitsaneas, P. Young, A. B. Schneider, C. Maier, S. Kamp, M. Höfling, S. Knauer, S. Harbord, E. Hu, C. Y. Rarity, J. G. Oulton, R. |
description | Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions. |
doi_str_mv | 10.1103/PhysRevB.93.241409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880032073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880032073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-c66d7f6afa49100b57f11051da285d1fcdea65165e63d01a142bacc9bfb07d8c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGr_gKss3Uy9SWYyk6UWX1BQiq5DJo82Mplpk4zQf-9I1c29l8vhcM6H0DWBJSHAbt92x7SxX_dLwZa0JCWIMzSjJReFEFyc_98VXKJFSp8AQDiIGsQMbVY7FbfW4MOo-jwGbIaMg9dx2PuuUxGnY8o2YDdEbGy2Mfjep-w17vx2l4ug8vTEvp-m0tkPfbpCF051yS5-9xx9PD68r56L9evTy-puXWhGRS4056Z2XDlVCgLQVrWb2lTEKNpUhjhtrOIV4ZXlzABRpKSt0lq0roXaNJrN0c3Jdx-Hw2hTlsEnbafUvR3GJEnTADAKNZuk9CSdeqUUrZP76IOKR0lA_jCUfwylYPLEkH0D3PBosA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880032073</pqid></control><display><type>article</type><title>Charged quantum dot micropillar system for deterministic light-matter interactions</title><source>American Physical Society Journals</source><creator>Androvitsaneas, P. ; Young, A. B. ; Schneider, C. ; Maier, S. ; Kamp, M. ; Höfling, S. ; Knauer, S. ; Harbord, E. ; Hu, C. Y. ; Rarity, J. G. ; Oulton, R.</creator><creatorcontrib>Androvitsaneas, P. ; Young, A. B. ; Schneider, C. ; Maier, S. ; Kamp, M. ; Höfling, S. ; Knauer, S. ; Harbord, E. ; Hu, C. Y. ; Rarity, J. G. ; Oulton, R.</creatorcontrib><description>Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.241409</identifier><language>eng</language><subject>Condensed matter ; Devices ; Efficiency ; Holes ; Microcavities ; Photons ; Quantum dots ; Semiconductors</subject><ispartof>Physical review. B, 2016-06, Vol.93 (24), Article 241409</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-c66d7f6afa49100b57f11051da285d1fcdea65165e63d01a142bacc9bfb07d8c3</citedby><cites>FETCH-LOGICAL-c329t-c66d7f6afa49100b57f11051da285d1fcdea65165e63d01a142bacc9bfb07d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids></links><search><creatorcontrib>Androvitsaneas, P.</creatorcontrib><creatorcontrib>Young, A. B.</creatorcontrib><creatorcontrib>Schneider, C.</creatorcontrib><creatorcontrib>Maier, S.</creatorcontrib><creatorcontrib>Kamp, M.</creatorcontrib><creatorcontrib>Höfling, S.</creatorcontrib><creatorcontrib>Knauer, S.</creatorcontrib><creatorcontrib>Harbord, E.</creatorcontrib><creatorcontrib>Hu, C. Y.</creatorcontrib><creatorcontrib>Rarity, J. G.</creatorcontrib><creatorcontrib>Oulton, R.</creatorcontrib><title>Charged quantum dot micropillar system for deterministic light-matter interactions</title><title>Physical review. B</title><description>Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.</description><subject>Condensed matter</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Holes</subject><subject>Microcavities</subject><subject>Photons</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGr_gKss3Uy9SWYyk6UWX1BQiq5DJo82Mplpk4zQf-9I1c29l8vhcM6H0DWBJSHAbt92x7SxX_dLwZa0JCWIMzSjJReFEFyc_98VXKJFSp8AQDiIGsQMbVY7FbfW4MOo-jwGbIaMg9dx2PuuUxGnY8o2YDdEbGy2Mfjep-w17vx2l4ug8vTEvp-m0tkPfbpCF051yS5-9xx9PD68r56L9evTy-puXWhGRS4056Z2XDlVCgLQVrWb2lTEKNpUhjhtrOIV4ZXlzABRpKSt0lq0roXaNJrN0c3Jdx-Hw2hTlsEnbafUvR3GJEnTADAKNZuk9CSdeqUUrZP76IOKR0lA_jCUfwylYPLEkH0D3PBosA</recordid><startdate>20160621</startdate><enddate>20160621</enddate><creator>Androvitsaneas, P.</creator><creator>Young, A. B.</creator><creator>Schneider, C.</creator><creator>Maier, S.</creator><creator>Kamp, M.</creator><creator>Höfling, S.</creator><creator>Knauer, S.</creator><creator>Harbord, E.</creator><creator>Hu, C. Y.</creator><creator>Rarity, J. G.</creator><creator>Oulton, R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160621</creationdate><title>Charged quantum dot micropillar system for deterministic light-matter interactions</title><author>Androvitsaneas, P. ; Young, A. B. ; Schneider, C. ; Maier, S. ; Kamp, M. ; Höfling, S. ; Knauer, S. ; Harbord, E. ; Hu, C. Y. ; Rarity, J. G. ; Oulton, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-c66d7f6afa49100b57f11051da285d1fcdea65165e63d01a142bacc9bfb07d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed matter</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Holes</topic><topic>Microcavities</topic><topic>Photons</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Androvitsaneas, P.</creatorcontrib><creatorcontrib>Young, A. B.</creatorcontrib><creatorcontrib>Schneider, C.</creatorcontrib><creatorcontrib>Maier, S.</creatorcontrib><creatorcontrib>Kamp, M.</creatorcontrib><creatorcontrib>Höfling, S.</creatorcontrib><creatorcontrib>Knauer, S.</creatorcontrib><creatorcontrib>Harbord, E.</creatorcontrib><creatorcontrib>Hu, C. Y.</creatorcontrib><creatorcontrib>Rarity, J. G.</creatorcontrib><creatorcontrib>Oulton, R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Androvitsaneas, P.</au><au>Young, A. B.</au><au>Schneider, C.</au><au>Maier, S.</au><au>Kamp, M.</au><au>Höfling, S.</au><au>Knauer, S.</au><au>Harbord, E.</au><au>Hu, C. Y.</au><au>Rarity, J. G.</au><au>Oulton, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charged quantum dot micropillar system for deterministic light-matter interactions</atitle><jtitle>Physical review. B</jtitle><date>2016-06-21</date><risdate>2016</risdate><volume>93</volume><issue>24</issue><artnum>241409</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.</abstract><doi>10.1103/PhysRevB.93.241409</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-06, Vol.93 (24), Article 241409 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880032073 |
source | American Physical Society Journals |
subjects | Condensed matter Devices Efficiency Holes Microcavities Photons Quantum dots Semiconductors |
title | Charged quantum dot micropillar system for deterministic light-matter interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charged%20quantum%20dot%20micropillar%20system%20for%20deterministic%20light-matter%20interactions&rft.jtitle=Physical%20review.%20B&rft.au=Androvitsaneas,%20P.&rft.date=2016-06-21&rft.volume=93&rft.issue=24&rft.artnum=241409&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.241409&rft_dat=%3Cproquest_cross%3E1880032073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880032073&rft_id=info:pmid/&rfr_iscdi=true |