Charged quantum dot micropillar system for deterministic light-matter interactions

Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-06, Vol.93 (24), Article 241409
Hauptverfasser: Androvitsaneas, P., Young, A. B., Schneider, C., Maier, S., Kamp, M., Höfling, S., Knauer, S., Harbord, E., Hu, C. Y., Rarity, J. G., Oulton, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Physical review. B
container_volume 93
creator Androvitsaneas, P.
Young, A. B.
Schneider, C.
Maier, S.
Kamp, M.
Höfling, S.
Knauer, S.
Harbord, E.
Hu, C. Y.
Rarity, J. G.
Oulton, R.
description Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.
doi_str_mv 10.1103/PhysRevB.93.241409
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880032073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880032073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-c66d7f6afa49100b57f11051da285d1fcdea65165e63d01a142bacc9bfb07d8c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGr_gKss3Uy9SWYyk6UWX1BQiq5DJo82Mplpk4zQf-9I1c29l8vhcM6H0DWBJSHAbt92x7SxX_dLwZa0JCWIMzSjJReFEFyc_98VXKJFSp8AQDiIGsQMbVY7FbfW4MOo-jwGbIaMg9dx2PuuUxGnY8o2YDdEbGy2Mfjep-w17vx2l4ug8vTEvp-m0tkPfbpCF051yS5-9xx9PD68r56L9evTy-puXWhGRS4056Z2XDlVCgLQVrWb2lTEKNpUhjhtrOIV4ZXlzABRpKSt0lq0roXaNJrN0c3Jdx-Hw2hTlsEnbafUvR3GJEnTADAKNZuk9CSdeqUUrZP76IOKR0lA_jCUfwylYPLEkH0D3PBosA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880032073</pqid></control><display><type>article</type><title>Charged quantum dot micropillar system for deterministic light-matter interactions</title><source>American Physical Society Journals</source><creator>Androvitsaneas, P. ; Young, A. B. ; Schneider, C. ; Maier, S. ; Kamp, M. ; Höfling, S. ; Knauer, S. ; Harbord, E. ; Hu, C. Y. ; Rarity, J. G. ; Oulton, R.</creator><creatorcontrib>Androvitsaneas, P. ; Young, A. B. ; Schneider, C. ; Maier, S. ; Kamp, M. ; Höfling, S. ; Knauer, S. ; Harbord, E. ; Hu, C. Y. ; Rarity, J. G. ; Oulton, R.</creatorcontrib><description>Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.241409</identifier><language>eng</language><subject>Condensed matter ; Devices ; Efficiency ; Holes ; Microcavities ; Photons ; Quantum dots ; Semiconductors</subject><ispartof>Physical review. B, 2016-06, Vol.93 (24), Article 241409</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-c66d7f6afa49100b57f11051da285d1fcdea65165e63d01a142bacc9bfb07d8c3</citedby><cites>FETCH-LOGICAL-c329t-c66d7f6afa49100b57f11051da285d1fcdea65165e63d01a142bacc9bfb07d8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids></links><search><creatorcontrib>Androvitsaneas, P.</creatorcontrib><creatorcontrib>Young, A. B.</creatorcontrib><creatorcontrib>Schneider, C.</creatorcontrib><creatorcontrib>Maier, S.</creatorcontrib><creatorcontrib>Kamp, M.</creatorcontrib><creatorcontrib>Höfling, S.</creatorcontrib><creatorcontrib>Knauer, S.</creatorcontrib><creatorcontrib>Harbord, E.</creatorcontrib><creatorcontrib>Hu, C. Y.</creatorcontrib><creatorcontrib>Rarity, J. G.</creatorcontrib><creatorcontrib>Oulton, R.</creatorcontrib><title>Charged quantum dot micropillar system for deterministic light-matter interactions</title><title>Physical review. B</title><description>Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.</description><subject>Condensed matter</subject><subject>Devices</subject><subject>Efficiency</subject><subject>Holes</subject><subject>Microcavities</subject><subject>Photons</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGr_gKss3Uy9SWYyk6UWX1BQiq5DJo82Mplpk4zQf-9I1c29l8vhcM6H0DWBJSHAbt92x7SxX_dLwZa0JCWIMzSjJReFEFyc_98VXKJFSp8AQDiIGsQMbVY7FbfW4MOo-jwGbIaMg9dx2PuuUxGnY8o2YDdEbGy2Mfjep-w17vx2l4ug8vTEvp-m0tkPfbpCF051yS5-9xx9PD68r56L9evTy-puXWhGRS4056Z2XDlVCgLQVrWb2lTEKNpUhjhtrOIV4ZXlzABRpKSt0lq0roXaNJrN0c3Jdx-Hw2hTlsEnbafUvR3GJEnTADAKNZuk9CSdeqUUrZP76IOKR0lA_jCUfwylYPLEkH0D3PBosA</recordid><startdate>20160621</startdate><enddate>20160621</enddate><creator>Androvitsaneas, P.</creator><creator>Young, A. B.</creator><creator>Schneider, C.</creator><creator>Maier, S.</creator><creator>Kamp, M.</creator><creator>Höfling, S.</creator><creator>Knauer, S.</creator><creator>Harbord, E.</creator><creator>Hu, C. Y.</creator><creator>Rarity, J. G.</creator><creator>Oulton, R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160621</creationdate><title>Charged quantum dot micropillar system for deterministic light-matter interactions</title><author>Androvitsaneas, P. ; Young, A. B. ; Schneider, C. ; Maier, S. ; Kamp, M. ; Höfling, S. ; Knauer, S. ; Harbord, E. ; Hu, C. Y. ; Rarity, J. G. ; Oulton, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-c66d7f6afa49100b57f11051da285d1fcdea65165e63d01a142bacc9bfb07d8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed matter</topic><topic>Devices</topic><topic>Efficiency</topic><topic>Holes</topic><topic>Microcavities</topic><topic>Photons</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Androvitsaneas, P.</creatorcontrib><creatorcontrib>Young, A. B.</creatorcontrib><creatorcontrib>Schneider, C.</creatorcontrib><creatorcontrib>Maier, S.</creatorcontrib><creatorcontrib>Kamp, M.</creatorcontrib><creatorcontrib>Höfling, S.</creatorcontrib><creatorcontrib>Knauer, S.</creatorcontrib><creatorcontrib>Harbord, E.</creatorcontrib><creatorcontrib>Hu, C. Y.</creatorcontrib><creatorcontrib>Rarity, J. G.</creatorcontrib><creatorcontrib>Oulton, R.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Androvitsaneas, P.</au><au>Young, A. B.</au><au>Schneider, C.</au><au>Maier, S.</au><au>Kamp, M.</au><au>Höfling, S.</au><au>Knauer, S.</au><au>Harbord, E.</au><au>Hu, C. Y.</au><au>Rarity, J. G.</au><au>Oulton, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charged quantum dot micropillar system for deterministic light-matter interactions</atitle><jtitle>Physical review. B</jtitle><date>2016-06-21</date><risdate>2016</risdate><volume>93</volume><issue>24</issue><artnum>241409</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.</abstract><doi>10.1103/PhysRevB.93.241409</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-06, Vol.93 (24), Article 241409
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_miscellaneous_1880032073
source American Physical Society Journals
subjects Condensed matter
Devices
Efficiency
Holes
Microcavities
Photons
Quantum dots
Semiconductors
title Charged quantum dot micropillar system for deterministic light-matter interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charged%20quantum%20dot%20micropillar%20system%20for%20deterministic%20light-matter%20interactions&rft.jtitle=Physical%20review.%20B&rft.au=Androvitsaneas,%20P.&rft.date=2016-06-21&rft.volume=93&rft.issue=24&rft.artnum=241409&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.241409&rft_dat=%3Cproquest_cross%3E1880032073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880032073&rft_id=info:pmid/&rfr_iscdi=true