Charged quantum dot micropillar system for deterministic light-matter interactions

Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-06, Vol.93 (24), Article 241409
Hauptverfasser: Androvitsaneas, P., Young, A. B., Schneider, C., Maier, S., Kamp, M., Höfling, S., Knauer, S., Harbord, E., Hu, C. Y., Rarity, J. G., Oulton, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (~ 6[degrees]) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q~ 290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.93.241409