Closed-Form FIR Filter Design with Accurately Controllable Cut-Off Frequency
To enhance the efficiency of designing finite impulse response (FIR) filters with a controllable cut-off frequency that possess excellent transfer characteristics, this paper proposes a closed-form filter design based on transfer characteristic compensation. First, a novel filter design based on a c...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2017-02, Vol.36 (2), p.721-741 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To enhance the efficiency of designing finite impulse response (FIR) filters with a controllable cut-off frequency that possess excellent transfer characteristics, this paper proposes a closed-form filter design based on transfer characteristic compensation. First, a novel filter design based on a convolution window is presented, and the relationship between the spectrum of this window and the filter performance is elaborated. We then derive a three-stage filter design scheme that describes the design of an irregular filter, design of a compensation filter and filter summation. This scheme can be simplified into a closed-form design characterized by two analytic formulas by merging the intermediate steps. The configuration of a vital Kaiser window parameter is also derived. Numerical results show that the proposed closed-form design accurately controls the cut-off frequencies and exhibits a transfer performance comparable to the Remez design and the closed-form weighted least square (WLS) design. Moreover, our method is more efficiency than the closed-form WLS method for the design of high-order FIR filters. |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-016-0330-7 |