Detection and localization of damage using empirical mode decomposition and multilevel support vector machine
Damage in the structure may raise a significant amount of maintenance cost and serious safety problems. Hence detection of the damage at its early stage is of prime importance. The main contribution pursued in this investigation is to propose a generic optimal methodology to improve the accuracy of...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-03, Vol.122 (3), p.1-9, Article 250 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Damage in the structure may raise a significant amount of maintenance cost and serious safety problems. Hence detection of the damage at its early stage is of prime importance. The main contribution pursued in this investigation is to propose a generic optimal methodology to improve the accuracy of positioning of the flaw in a structure. This novel approach involves a two-step process. The first step essentially aims at extracting the damage-sensitive features from the received signal, and these extracted features are often termed the
damage index
or
damage indices
, serving as an indicator to know whether the damage is present or not. In particular, a multilevel SVM (support vector machine) plays a vital role in the distinction of faulty and healthy structures. Formerly, when a structure is unveiled as a damaged structure, in the subsequent step, the position of the damage is identified using Hilbert–Huang transform. The proposed algorithm has been evaluated in both simulation and experimental tests on a 6061 aluminum plate with dimensions 300 mm × 300 mm × 5 mm which accordingly yield considerable improvement in the accuracy of estimating the position of the flaw. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-016-9753-z |