Finite Element Analysis of Flexible Pipes Under Axial Compression: Influence of the Sample Length
In order to study the axial compressive behavior of flexible pipes, a nonlinear tridimensional finite element model was developed. This model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape, and a rigid inner core. U...
Gespeichert in:
Veröffentlicht in: | Journal of offshore mechanics and Arctic engineering 2017-02, Vol.139 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to study the axial compressive behavior of flexible pipes, a nonlinear tridimensional finite element model was developed. This model recreates a five layer flexible pipe with two tensile armor layers, an external polymeric sheath, an orthotropic high strength tape, and a rigid inner core. Using this model, several studies were conducted to verify the influence of key parameters on the wire instability phenomenon. The pipe sample length can be considered as one of these parameters. This paper includes a detailed description of the finite element model itself and a case study where the length of the pipe is varied. The procedure of this analysis is here described and a case study is presented which shows that the sample length itself has no practical effect on the prebuckling response of the samples and a small effect on the limit force value. The postbuckling response, however, presented high sensitivity to the changes, but its erratic behavior has made impossible to establish a pattern. |
---|---|
ISSN: | 0892-7219 1528-896X |
DOI: | 10.1115/1.4034379 |