Stable homotopy classification of A
We study the stable homotopy types of F sub( n(2)) super(4) -polyhedra, i.e., (n - 1)-connected, at most (n + 4)-dimensional polyhedra with 2-torsion free homologies. We are able to classify the indecomposable F sub( n(2)) super(4) -polyhedra. The proof relies on the matrix problem technique which w...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2016-06, Vol.59 (6), p.1141-1162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the stable homotopy types of F sub( n(2)) super(4) -polyhedra, i.e., (n - 1)-connected, at most (n + 4)-dimensional polyhedra with 2-torsion free homologies. We are able to classify the indecomposable F sub( n(2)) super(4) -polyhedra. The proof relies on the matrix problem technique which was developed in the classification of representations of algebras and applied to homotopy theory by Baues and Drozd (1999, 2001, 2004). |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-016-5123-8 |