Small prime solutions to cubic equations

Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2016-10, Vol.59 (10), p.1909-1918
1. Verfasser: Zhao, LiLu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1918
container_issue 10
container_start_page 1909
container_title Science China. Mathematics
container_volume 59
creator Zhao, LiLu
description Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013).
doi_str_mv 10.1007/s11425-016-5150-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670181413</cqvip_id><sourcerecordid>1880867722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ffefdae97c344b36a21093cffcfdb7b3bc62a17a8ff7f69223ea382fb80f1b673</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2A3jb6KUXlAEW2KNp_JeYeFDPBCjUbbZLu-we_PbSbmOMBznAhPzem5mH0CWQGyBE3iYATktMQOASSoLLEzQBJSqcL3qaayE5llSxczRLaU3yYRXhkk3Q_G1jmqbYdvXGFyk2Q1_HNhV9LNxga1f43WAOXxfoLJgm-dnxnaKPh_v3xRN-eX18Xty9YMek6HEIPiyNr6RjnFsmDAVSMReCC0srLbNOUAPSqBBkEBWlzBumaLCKBLBCsimaj77bLu4Gn3q9qZPzTWNaH4ekQSlCaMlpldHrP-g6Dl2bpztQSkiZ_acIRsp1MaXOB71f1nRfGojex6fH-HSOT-_j02XW0FGTMtuufPfL-R_R1bHRZ2xXu6z76SQkAQUcGPsGxQd8ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880867722</pqid></control><display><type>article</type><title>Small prime solutions to cubic equations</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, LiLu</creator><creatorcontrib>Zhao, LiLu</creatorcontrib><description>Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013).</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-016-5150-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Cubic equations ; Integers ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; mod ; 三次方程 ; 互质 ; 平均 ; 立方型 ; 非零整数</subject><ispartof>Science China. Mathematics, 2016-10, Vol.59 (10), p.1909-1918</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-ffefdae97c344b36a21093cffcfdb7b3bc62a17a8ff7f69223ea382fb80f1b673</citedby><cites>FETCH-LOGICAL-c376t-ffefdae97c344b36a21093cffcfdb7b3bc62a17a8ff7f69223ea382fb80f1b673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-016-5150-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-016-5150-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhao, LiLu</creatorcontrib><title>Small prime solutions to cubic equations</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013).</description><subject>Applications of Mathematics</subject><subject>Cubic equations</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>mod</subject><subject>三次方程</subject><subject>互质</subject><subject>平均</subject><subject>立方型</subject><subject>非零整数</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2A3jb6KUXlAEW2KNp_JeYeFDPBCjUbbZLu-we_PbSbmOMBznAhPzem5mH0CWQGyBE3iYATktMQOASSoLLEzQBJSqcL3qaayE5llSxczRLaU3yYRXhkk3Q_G1jmqbYdvXGFyk2Q1_HNhV9LNxga1f43WAOXxfoLJgm-dnxnaKPh_v3xRN-eX18Xty9YMek6HEIPiyNr6RjnFsmDAVSMReCC0srLbNOUAPSqBBkEBWlzBumaLCKBLBCsimaj77bLu4Gn3q9qZPzTWNaH4ekQSlCaMlpldHrP-g6Dl2bpztQSkiZ_acIRsp1MaXOB71f1nRfGojex6fH-HSOT-_j02XW0FGTMtuufPfL-R_R1bHRZ2xXu6z76SQkAQUcGPsGxQd8ig</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Zhao, LiLu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20161001</creationdate><title>Small prime solutions to cubic equations</title><author>Zhao, LiLu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ffefdae97c344b36a21093cffcfdb7b3bc62a17a8ff7f69223ea382fb80f1b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Cubic equations</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>mod</topic><topic>三次方程</topic><topic>互质</topic><topic>平均</topic><topic>立方型</topic><topic>非零整数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, LiLu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, LiLu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small prime solutions to cubic equations</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>59</volume><issue>10</issue><spage>1909</spage><epage>1918</epage><pages>1909-1918</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013).</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-016-5150-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2016-10, Vol.59 (10), p.1909-1918
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_miscellaneous_1880025429
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Cubic equations
Integers
Mathematical analysis
Mathematics
Mathematics and Statistics
mod
三次方程
互质
平均
立方型
非零整数
title Small prime solutions to cubic equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20prime%20solutions%20to%20cubic%20equations&rft.jtitle=Science%20China.%20Mathematics&rft.au=Zhao,%20LiLu&rft.date=2016-10-01&rft.volume=59&rft.issue=10&rft.spage=1909&rft.epage=1918&rft.pages=1909-1918&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-016-5150-5&rft_dat=%3Cproquest_cross%3E1880867722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880867722&rft_id=info:pmid/&rft_cqvip_id=670181413&rfr_iscdi=true