Small prime solutions to cubic equations
Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2016-10, Vol.59 (10), p.1909-1918 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1918 |
---|---|
container_issue | 10 |
container_start_page | 1909 |
container_title | Science China. Mathematics |
container_volume | 59 |
creator | Zhao, LiLu |
description | Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013). |
doi_str_mv | 10.1007/s11425-016-5150-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670181413</cqvip_id><sourcerecordid>1880867722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-ffefdae97c344b36a21093cffcfdb7b3bc62a17a8ff7f69223ea382fb80f1b673</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRxKb2A3jb6KUXlAEW2KNp_JeYeFDPBCjUbbZLu-we_PbSbmOMBznAhPzem5mH0CWQGyBE3iYATktMQOASSoLLEzQBJSqcL3qaayE5llSxczRLaU3yYRXhkk3Q_G1jmqbYdvXGFyk2Q1_HNhV9LNxga1f43WAOXxfoLJgm-dnxnaKPh_v3xRN-eX18Xty9YMek6HEIPiyNr6RjnFsmDAVSMReCC0srLbNOUAPSqBBkEBWlzBumaLCKBLBCsimaj77bLu4Gn3q9qZPzTWNaH4ekQSlCaMlpldHrP-g6Dl2bpztQSkiZ_acIRsp1MaXOB71f1nRfGojex6fH-HSOT-_j02XW0FGTMtuufPfL-R_R1bHRZ2xXu6z76SQkAQUcGPsGxQd8ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880867722</pqid></control><display><type>article</type><title>Small prime solutions to cubic equations</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Zhao, LiLu</creator><creatorcontrib>Zhao, LiLu</creatorcontrib><description>Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013).</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-016-5150-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Cubic equations ; Integers ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; mod ; 三次方程 ; 互质 ; 平均 ; 立方型 ; 非零整数</subject><ispartof>Science China. Mathematics, 2016-10, Vol.59 (10), p.1909-1918</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-ffefdae97c344b36a21093cffcfdb7b3bc62a17a8ff7f69223ea382fb80f1b673</citedby><cites>FETCH-LOGICAL-c376t-ffefdae97c344b36a21093cffcfdb7b3bc62a17a8ff7f69223ea382fb80f1b673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-016-5150-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-016-5150-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zhao, LiLu</creatorcontrib><title>Small prime solutions to cubic equations</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013).</description><subject>Applications of Mathematics</subject><subject>Cubic equations</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>mod</subject><subject>三次方程</subject><subject>互质</subject><subject>平均</subject><subject>立方型</subject><subject>非零整数</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRxKb2A3jb6KUXlAEW2KNp_JeYeFDPBCjUbbZLu-we_PbSbmOMBznAhPzem5mH0CWQGyBE3iYATktMQOASSoLLEzQBJSqcL3qaayE5llSxczRLaU3yYRXhkk3Q_G1jmqbYdvXGFyk2Q1_HNhV9LNxga1f43WAOXxfoLJgm-dnxnaKPh_v3xRN-eX18Xty9YMek6HEIPiyNr6RjnFsmDAVSMReCC0srLbNOUAPSqBBkEBWlzBumaLCKBLBCsimaj77bLu4Gn3q9qZPzTWNaH4ekQSlCaMlpldHrP-g6Dl2bpztQSkiZ_acIRsp1MaXOB71f1nRfGojex6fH-HSOT-_j02XW0FGTMtuufPfL-R_R1bHRZ2xXu6z76SQkAQUcGPsGxQd8ig</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Zhao, LiLu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20161001</creationdate><title>Small prime solutions to cubic equations</title><author>Zhao, LiLu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-ffefdae97c344b36a21093cffcfdb7b3bc62a17a8ff7f69223ea382fb80f1b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Cubic equations</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>mod</topic><topic>三次方程</topic><topic>互质</topic><topic>平均</topic><topic>立方型</topic><topic>非零整数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, LiLu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, LiLu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small prime solutions to cubic equations</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>59</volume><issue>10</issue><spage>1909</spage><epage>1918</epage><pages>1909-1918</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013).</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-016-5150-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2016-10, Vol.59 (10), p.1909-1918 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880025429 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Cubic equations Integers Mathematical analysis Mathematics Mathematics and Statistics mod 三次方程 互质 平均 立方型 非零整数 |
title | Small prime solutions to cubic equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20prime%20solutions%20to%20cubic%20equations&rft.jtitle=Science%20China.%20Mathematics&rft.au=Zhao,%20LiLu&rft.date=2016-10-01&rft.volume=59&rft.issue=10&rft.spage=1909&rft.epage=1918&rft.pages=1909-1918&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-016-5150-5&rft_dat=%3Cproquest_cross%3E1880867722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880867722&rft_id=info:pmid/&rft_cqvip_id=670181413&rfr_iscdi=true |