Small prime solutions to cubic equations
Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2016-10, Vol.59 (10), p.1909-1918 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013). |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-016-5150-5 |