Small prime solutions to cubic equations

Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2016-10, Vol.59 (10), p.1909-1918
1. Verfasser: Zhao, LiLu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let a1,…,a9 be nonzero integers not of the same sign, and let b be an integer. Suppose that a1,…,a9 are pairwise coprime and a1+…a9≡b (mod 2). We apply the p-adic method of Davenport to find an explicit P = P(a1,..., a9, n) such that the cubic equation a1p1^3+…+a9p9^3=b is solvable with pj≤Pfor all 1≤j≤9. It is proved that one can take P=max(|a1]…|a9|}^c + |b|^1/3 with c=2. This improves upon the earlier result with c=14 due to Liu (2013).
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-016-5150-5