Laser ablation of absorbing liquids under transparent cover: acoustical and optical monitoring
Phase transition induced with infrared (λ = 2920 nm and λ = 2940 nm) nanosecond laser pulses in strongly absorbing liquids (water, ethanol) under transparent solid cover is investigated with the help of acoustical and optical monitoring. LiNbO 3 transducer is used for registration of pressure pulses...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-06, Vol.122 (6), p.1-5, Article 594 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phase transition induced with infrared (λ = 2920 nm and λ = 2940 nm) nanosecond laser pulses in strongly absorbing liquids (water, ethanol) under transparent solid cover is investigated with the help of acoustical and optical monitoring. LiNbO
3
transducer is used for registration of pressure pulses generated in irradiated liquids. Optical signals due to scattering and specular reflection of probing optical beams are explored with the schemes involving total internal reflection and interference effects. Combination of these two optical diagnostic methods permits for the first time to show that irradiation of covered liquids leads to vapor cavity formation which is divided from the cover with thin (submicron) liquid film despite the fact that radiation intensity maximum is located just at the liquid–plate boundary. The cavity formation is due to explosive boiling which occurs when the superheated liquid reaches its superheating limit in near critical region. After the first acoustical signal, the second signal is observed with several hundreds microseconds time delay which is caused by the vapor cavity collapse. Some results of optical and acoustical diagnostics in the case of free liquid surface are also presented. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-016-0112-x |