Multiple liquid bridges with non-smooth interfaces

We consider a coexistence of two axisymmetric liquid bridges LB i and LB m of two immiscible liquids i and m which are immersed in a third liquid (or gas) e and trapped between two smooth solid bodies with axisymmetric surfaces S 1 , S 2 and free contact lines. Evolution of liquid bridges allows two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2016-08, Vol.67 (4), p.1-13, Article 107
Hauptverfasser: Fel, Leonid G., Rubinstein, Boris Y., Ratner, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 4
container_start_page 1
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 67
creator Fel, Leonid G.
Rubinstein, Boris Y.
Ratner, Vadim
description We consider a coexistence of two axisymmetric liquid bridges LB i and LB m of two immiscible liquids i and m which are immersed in a third liquid (or gas) e and trapped between two smooth solid bodies with axisymmetric surfaces S 1 , S 2 and free contact lines. Evolution of liquid bridges allows two different configurations of LB i and LB m with multiple (five or three) interfaces of non-smooth shape. We formulate a variational problem with volume constraints and present its governing equations supplemented by boundary conditions. We find a universal relationship between curvature of the interfaces and discuss the Neumann triangle relations at the singular curve where all liquids meet together.
doi_str_mv 10.1007/s00033-016-0702-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880874195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-dfd364be8ba3dc8723885009a2a575c23c912b01600172f3c0f35b1e55686f9e3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9gisbAYnr9iZ0QVFKQiFpitxLGLqzRu7USIf49LGBAS03vDOVdXF6FLAjcEQN4mAGAMAykxSKBYHqEZ4RRwBaw6RjMAzjGlUpyis5Q2mZYE2AzR57Eb_K6zRef3o2-LJvp2bVPx4Yf3og89TtsQ8uv7wUZXG5vO0Ymru2Qvfu4cvT3cvy4e8epl-bS4W2HDgAy4dS0reWNVU7PWKEmZUgKgqmktpDCUmYrQJhcGIJI6ZsAx0RArRKlKV1k2R9dT7i6G_WjToLc-Gdt1dW_DmDRRCoByDjyjV3_QTRhjn9t9U0pyUolMkYkyMaQUrdO76Ld1_NQE9GFFPa2ocyl9WFHL7NDJSZnt1zb-Sv5X-gI7dXJZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880874195</pqid></control><display><type>article</type><title>Multiple liquid bridges with non-smooth interfaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fel, Leonid G. ; Rubinstein, Boris Y. ; Ratner, Vadim</creator><creatorcontrib>Fel, Leonid G. ; Rubinstein, Boris Y. ; Ratner, Vadim</creatorcontrib><description>We consider a coexistence of two axisymmetric liquid bridges LB i and LB m of two immiscible liquids i and m which are immersed in a third liquid (or gas) e and trapped between two smooth solid bodies with axisymmetric surfaces S 1 , S 2 and free contact lines. Evolution of liquid bridges allows two different configurations of LB i and LB m with multiple (five or three) interfaces of non-smooth shape. We formulate a variational problem with volume constraints and present its governing equations supplemented by boundary conditions. We find a universal relationship between curvature of the interfaces and discuss the Neumann triangle relations at the singular curve where all liquids meet together.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-016-0702-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of mathematics ; Axisymmetric ; Axisymmetric bodies ; Boundary conditions ; Contact ; Engineering ; Evolution ; Liquid bridges ; Liquids ; Mathematical analysis ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics ; Triangles</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2016-08, Vol.67 (4), p.1-13, Article 107</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-dfd364be8ba3dc8723885009a2a575c23c912b01600172f3c0f35b1e55686f9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-016-0702-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-016-0702-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fel, Leonid G.</creatorcontrib><creatorcontrib>Rubinstein, Boris Y.</creatorcontrib><creatorcontrib>Ratner, Vadim</creatorcontrib><title>Multiple liquid bridges with non-smooth interfaces</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>We consider a coexistence of two axisymmetric liquid bridges LB i and LB m of two immiscible liquids i and m which are immersed in a third liquid (or gas) e and trapped between two smooth solid bodies with axisymmetric surfaces S 1 , S 2 and free contact lines. Evolution of liquid bridges allows two different configurations of LB i and LB m with multiple (five or three) interfaces of non-smooth shape. We formulate a variational problem with volume constraints and present its governing equations supplemented by boundary conditions. We find a universal relationship between curvature of the interfaces and discuss the Neumann triangle relations at the singular curve where all liquids meet together.</description><subject>Applications of mathematics</subject><subject>Axisymmetric</subject><subject>Axisymmetric bodies</subject><subject>Boundary conditions</subject><subject>Contact</subject><subject>Engineering</subject><subject>Evolution</subject><subject>Liquid bridges</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Triangles</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9gisbAYnr9iZ0QVFKQiFpitxLGLqzRu7USIf49LGBAS03vDOVdXF6FLAjcEQN4mAGAMAykxSKBYHqEZ4RRwBaw6RjMAzjGlUpyis5Q2mZYE2AzR57Eb_K6zRef3o2-LJvp2bVPx4Yf3og89TtsQ8uv7wUZXG5vO0Ymru2Qvfu4cvT3cvy4e8epl-bS4W2HDgAy4dS0reWNVU7PWKEmZUgKgqmktpDCUmYrQJhcGIJI6ZsAx0RArRKlKV1k2R9dT7i6G_WjToLc-Gdt1dW_DmDRRCoByDjyjV3_QTRhjn9t9U0pyUolMkYkyMaQUrdO76Ld1_NQE9GFFPa2ocyl9WFHL7NDJSZnt1zb-Sv5X-gI7dXJZ</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Fel, Leonid G.</creator><creator>Rubinstein, Boris Y.</creator><creator>Ratner, Vadim</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160801</creationdate><title>Multiple liquid bridges with non-smooth interfaces</title><author>Fel, Leonid G. ; Rubinstein, Boris Y. ; Ratner, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-dfd364be8ba3dc8723885009a2a575c23c912b01600172f3c0f35b1e55686f9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of mathematics</topic><topic>Axisymmetric</topic><topic>Axisymmetric bodies</topic><topic>Boundary conditions</topic><topic>Contact</topic><topic>Engineering</topic><topic>Evolution</topic><topic>Liquid bridges</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fel, Leonid G.</creatorcontrib><creatorcontrib>Rubinstein, Boris Y.</creatorcontrib><creatorcontrib>Ratner, Vadim</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fel, Leonid G.</au><au>Rubinstein, Boris Y.</au><au>Ratner, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple liquid bridges with non-smooth interfaces</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>67</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>107</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>We consider a coexistence of two axisymmetric liquid bridges LB i and LB m of two immiscible liquids i and m which are immersed in a third liquid (or gas) e and trapped between two smooth solid bodies with axisymmetric surfaces S 1 , S 2 and free contact lines. Evolution of liquid bridges allows two different configurations of LB i and LB m with multiple (five or three) interfaces of non-smooth shape. We formulate a variational problem with volume constraints and present its governing equations supplemented by boundary conditions. We find a universal relationship between curvature of the interfaces and discuss the Neumann triangle relations at the singular curve where all liquids meet together.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-016-0702-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2016-08, Vol.67 (4), p.1-13, Article 107
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_miscellaneous_1880024404
source SpringerLink Journals - AutoHoldings
subjects Applications of mathematics
Axisymmetric
Axisymmetric bodies
Boundary conditions
Contact
Engineering
Evolution
Liquid bridges
Liquids
Mathematical analysis
Mathematical Methods in Physics
Theoretical and Applied Mechanics
Triangles
title Multiple liquid bridges with non-smooth interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20liquid%20bridges%20with%20non-smooth%20interfaces&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Fel,%20Leonid%20G.&rft.date=2016-08-01&rft.volume=67&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=107&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-016-0702-7&rft_dat=%3Cproquest_cross%3E1880874195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880874195&rft_id=info:pmid/&rfr_iscdi=true