Energy dissipation in intercalated carbon nanotube forests with metal layers
Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectiv...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-02, Vol.122 (2), p.1-11, Article 88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectively. Stacks of one, two, and three layers of these forests were assembled and compressed to measure their mechanical properties. The samples were strain limited to 0.7, and the results indicate that energy dissipation is approximately linear with respect to the number of layers and relatively independent of metal type. The energy per unit volume was approximately the same for all samples. Successive stacking of CNT forests reduces local buckling events, which is enhanced with a thick Ag deposition on the CNT forest surface. Young’s modulus was also observed to increase as the number of layers was increased. These results are useful in the design of composite materials for high energy absorption and high stiffness applications. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-015-9571-8 |