Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior

A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2016-05, Vol.122 (5), p.1-6, Article 521
Hauptverfasser: Xu, K. Q., Zeng, H. R., Zhao, K. Y., Li, G. R., Shi, X., Chen, L. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 5
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 122
creator Xu, K. Q.
Zeng, H. R.
Zhao, K. Y.
Li, G. R.
Shi, X.
Chen, L. D.
description A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties.
doi_str_mv 10.1007/s00339-016-0050-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-805973b613eebcaebcbfa71bfa95ad31b2ed82f428506286e32df461d14a9c53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gyshjOdj6cEVV8SZUY6IzlOOc2VWIXO0Hqv8dVmBg46e6Ge9-T3oeQWwb3DKB6iABC1BRYSQEKoNUZWbBccAqlgHOygDqvqBR1eUmuYtxDqpzzBfn8MNq5zm0zhzpQ22HfZuMOw-CxRzOGzmRDZ4KPxh-OmfUhi1MTp2C1wcxplw66x7-WBnf6u_PhmlxY3Ue8-d1Lsnl-2qxe6fr95W31uKZGcDZSCUVdiaZkArExOnVjdcXSqAvdCtZwbCW3OZcFlFyWKHhr85K1LNe1KcSS3M1vD8F_TRhHNXTRYN9rh36KikkJwHNeyyRls_SUKQa06hC6QYejYqBOKNWMUiWU6oRSVcnDZ09MWrfFoPZ-Ci4F-sf0A2RheRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024298</pqid></control><display><type>article</type><title>Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior</title><source>SpringerNature Journals</source><creator>Xu, K. Q. ; Zeng, H. R. ; Zhao, K. Y. ; Li, G. R. ; Shi, X. ; Chen, L. D.</creator><creatorcontrib>Xu, K. Q. ; Zeng, H. R. ; Zhao, K. Y. ; Li, G. R. ; Shi, X. ; Chen, L. D.</creatorcontrib><description>A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0050-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Coefficients ; Condensed Matter Physics ; Derivation ; Machines ; Manufacturing ; Microscopy ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Rapid Communication ; Scanning ; Scanning transmission electron microscopy ; Surfaces and Interfaces ; Thermoelectric materials ; Thermoelectricity ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2016-05, Vol.122 (5), p.1-6, Article 521</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-805973b613eebcaebcbfa71bfa95ad31b2ed82f428506286e32df461d14a9c53</citedby><cites>FETCH-LOGICAL-c321t-805973b613eebcaebcbfa71bfa95ad31b2ed82f428506286e32df461d14a9c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-0050-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-0050-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, K. Q.</creatorcontrib><creatorcontrib>Zeng, H. R.</creatorcontrib><creatorcontrib>Zhao, K. Y.</creatorcontrib><creatorcontrib>Li, G. R.</creatorcontrib><creatorcontrib>Shi, X.</creatorcontrib><creatorcontrib>Chen, L. D.</creatorcontrib><title>Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties.</description><subject>Characterization and Evaluation of Materials</subject><subject>Coefficients</subject><subject>Condensed Matter Physics</subject><subject>Derivation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Microscopy</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Rapid Communication</subject><subject>Scanning</subject><subject>Scanning transmission electron microscopy</subject><subject>Surfaces and Interfaces</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gyshjOdj6cEVV8SZUY6IzlOOc2VWIXO0Hqv8dVmBg46e6Ge9-T3oeQWwb3DKB6iABC1BRYSQEKoNUZWbBccAqlgHOygDqvqBR1eUmuYtxDqpzzBfn8MNq5zm0zhzpQ22HfZuMOw-CxRzOGzmRDZ4KPxh-OmfUhi1MTp2C1wcxplw66x7-WBnf6u_PhmlxY3Ue8-d1Lsnl-2qxe6fr95W31uKZGcDZSCUVdiaZkArExOnVjdcXSqAvdCtZwbCW3OZcFlFyWKHhr85K1LNe1KcSS3M1vD8F_TRhHNXTRYN9rh36KikkJwHNeyyRls_SUKQa06hC6QYejYqBOKNWMUiWU6oRSVcnDZ09MWrfFoPZ-Ci4F-sf0A2RheRc</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Xu, K. Q.</creator><creator>Zeng, H. R.</creator><creator>Zhao, K. Y.</creator><creator>Li, G. R.</creator><creator>Shi, X.</creator><creator>Chen, L. D.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior</title><author>Xu, K. Q. ; Zeng, H. R. ; Zhao, K. Y. ; Li, G. R. ; Shi, X. ; Chen, L. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-805973b613eebcaebcbfa71bfa95ad31b2ed82f428506286e32df461d14a9c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Coefficients</topic><topic>Condensed Matter Physics</topic><topic>Derivation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Microscopy</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Rapid Communication</topic><topic>Scanning</topic><topic>Scanning transmission electron microscopy</topic><topic>Surfaces and Interfaces</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, K. Q.</creatorcontrib><creatorcontrib>Zeng, H. R.</creatorcontrib><creatorcontrib>Zhao, K. Y.</creatorcontrib><creatorcontrib>Li, G. R.</creatorcontrib><creatorcontrib>Shi, X.</creatorcontrib><creatorcontrib>Chen, L. D.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, K. Q.</au><au>Zeng, H. R.</au><au>Zhao, K. Y.</au><au>Li, G. R.</au><au>Shi, X.</au><au>Chen, L. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>122</volume><issue>5</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>521</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0050-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2016-05, Vol.122 (5), p.1-6, Article 521
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1880024298
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Coefficients
Condensed Matter Physics
Derivation
Machines
Manufacturing
Microscopy
Nanostructure
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Rapid Communication
Scanning
Scanning transmission electron microscopy
Surfaces and Interfaces
Thermoelectric materials
Thermoelectricity
Thin Films
title Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanning%20near-field%20thermoelectric%20microscopy%20for%20subsurface%20nanoscale%20thermoelectric%20behavior&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Xu,%20K.%20Q.&rft.date=2016-05-01&rft.volume=122&rft.issue=5&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=521&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0050-7&rft_dat=%3Cproquest_cross%3E1880024298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880024298&rft_id=info:pmid/&rfr_iscdi=true