Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior
A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-05, Vol.122 (5), p.1-6, Article 521 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 122 |
creator | Xu, K. Q. Zeng, H. R. Zhao, K. Y. Li, G. R. Shi, X. Chen, L. D. |
description | A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties. |
doi_str_mv | 10.1007/s00339-016-0050-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-805973b613eebcaebcbfa71bfa95ad31b2ed82f428506286e32df461d14a9c53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gyshjOdj6cEVV8SZUY6IzlOOc2VWIXO0Hqv8dVmBg46e6Ge9-T3oeQWwb3DKB6iABC1BRYSQEKoNUZWbBccAqlgHOygDqvqBR1eUmuYtxDqpzzBfn8MNq5zm0zhzpQ22HfZuMOw-CxRzOGzmRDZ4KPxh-OmfUhi1MTp2C1wcxplw66x7-WBnf6u_PhmlxY3Ue8-d1Lsnl-2qxe6fr95W31uKZGcDZSCUVdiaZkArExOnVjdcXSqAvdCtZwbCW3OZcFlFyWKHhr85K1LNe1KcSS3M1vD8F_TRhHNXTRYN9rh36KikkJwHNeyyRls_SUKQa06hC6QYejYqBOKNWMUiWU6oRSVcnDZ09MWrfFoPZ-Ci4F-sf0A2RheRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024298</pqid></control><display><type>article</type><title>Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior</title><source>SpringerNature Journals</source><creator>Xu, K. Q. ; Zeng, H. R. ; Zhao, K. Y. ; Li, G. R. ; Shi, X. ; Chen, L. D.</creator><creatorcontrib>Xu, K. Q. ; Zeng, H. R. ; Zhao, K. Y. ; Li, G. R. ; Shi, X. ; Chen, L. D.</creatorcontrib><description>A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0050-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Coefficients ; Condensed Matter Physics ; Derivation ; Machines ; Manufacturing ; Microscopy ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Rapid Communication ; Scanning ; Scanning transmission electron microscopy ; Surfaces and Interfaces ; Thermoelectric materials ; Thermoelectricity ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2016-05, Vol.122 (5), p.1-6, Article 521</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-805973b613eebcaebcbfa71bfa95ad31b2ed82f428506286e32df461d14a9c53</citedby><cites>FETCH-LOGICAL-c321t-805973b613eebcaebcbfa71bfa95ad31b2ed82f428506286e32df461d14a9c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-0050-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-0050-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, K. Q.</creatorcontrib><creatorcontrib>Zeng, H. R.</creatorcontrib><creatorcontrib>Zhao, K. Y.</creatorcontrib><creatorcontrib>Li, G. R.</creatorcontrib><creatorcontrib>Shi, X.</creatorcontrib><creatorcontrib>Chen, L. D.</creatorcontrib><title>Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties.</description><subject>Characterization and Evaluation of Materials</subject><subject>Coefficients</subject><subject>Condensed Matter Physics</subject><subject>Derivation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Microscopy</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Rapid Communication</subject><subject>Scanning</subject><subject>Scanning transmission electron microscopy</subject><subject>Surfaces and Interfaces</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gyshjOdj6cEVV8SZUY6IzlOOc2VWIXO0Hqv8dVmBg46e6Ge9-T3oeQWwb3DKB6iABC1BRYSQEKoNUZWbBccAqlgHOygDqvqBR1eUmuYtxDqpzzBfn8MNq5zm0zhzpQ22HfZuMOw-CxRzOGzmRDZ4KPxh-OmfUhi1MTp2C1wcxplw66x7-WBnf6u_PhmlxY3Ue8-d1Lsnl-2qxe6fr95W31uKZGcDZSCUVdiaZkArExOnVjdcXSqAvdCtZwbCW3OZcFlFyWKHhr85K1LNe1KcSS3M1vD8F_TRhHNXTRYN9rh36KikkJwHNeyyRls_SUKQa06hC6QYejYqBOKNWMUiWU6oRSVcnDZ09MWrfFoPZ-Ci4F-sf0A2RheRc</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Xu, K. Q.</creator><creator>Zeng, H. R.</creator><creator>Zhao, K. Y.</creator><creator>Li, G. R.</creator><creator>Shi, X.</creator><creator>Chen, L. D.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160501</creationdate><title>Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior</title><author>Xu, K. Q. ; Zeng, H. R. ; Zhao, K. Y. ; Li, G. R. ; Shi, X. ; Chen, L. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-805973b613eebcaebcbfa71bfa95ad31b2ed82f428506286e32df461d14a9c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Coefficients</topic><topic>Condensed Matter Physics</topic><topic>Derivation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Microscopy</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Rapid Communication</topic><topic>Scanning</topic><topic>Scanning transmission electron microscopy</topic><topic>Surfaces and Interfaces</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, K. Q.</creatorcontrib><creatorcontrib>Zeng, H. R.</creatorcontrib><creatorcontrib>Zhao, K. Y.</creatorcontrib><creatorcontrib>Li, G. R.</creatorcontrib><creatorcontrib>Shi, X.</creatorcontrib><creatorcontrib>Chen, L. D.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, K. Q.</au><au>Zeng, H. R.</au><au>Zhao, K. Y.</au><au>Li, G. R.</au><au>Shi, X.</au><au>Chen, L. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-05-01</date><risdate>2016</risdate><volume>122</volume><issue>5</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>521</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0050-7</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2016-05, Vol.122 (5), p.1-6, Article 521 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880024298 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Coefficients Condensed Matter Physics Derivation Machines Manufacturing Microscopy Nanostructure Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Rapid Communication Scanning Scanning transmission electron microscopy Surfaces and Interfaces Thermoelectric materials Thermoelectricity Thin Films |
title | Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanning%20near-field%20thermoelectric%20microscopy%20for%20subsurface%20nanoscale%20thermoelectric%20behavior&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Xu,%20K.%20Q.&rft.date=2016-05-01&rft.volume=122&rft.issue=5&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=521&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0050-7&rft_dat=%3Cproquest_cross%3E1880024298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880024298&rft_id=info:pmid/&rfr_iscdi=true |