Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior
A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-05, Vol.122 (5), p.1-6, Article 521 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties. |
---|---|
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-016-0050-7 |