Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^1+min{α,1}) is established for both the displacement approximation in H~1-norm...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2016-09, Vol.59 (9), p.1835-1850 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^1+min{α,1}) is established for both the displacement approximation in H~1-norm and the stress approximation in L^2-norm under a mesh assumption, where α 〉 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-016-5144-3 |