Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method

Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^1+min{α,1}) is established for both the displacement approximation in H~1-norm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2016-09, Vol.59 (9), p.1835-1850
Hauptverfasser: Bai, YanHong, Wu, YongKe, Xie, XiaoPing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^1+min{α,1}) is established for both the displacement approximation in H~1-norm and the stress approximation in L^2-norm under a mesh assumption, where α 〉 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-016-5144-3