Experimental Investigation Into Creep Buckling of a Stainless Steel Plate Column Under Axial Compression at Extremely High Temperatures

This study aims to investigate the creep buckling behavior of a stainless steel column under axial compressive loading at extremely high temperatures. Creep buckling failure time of a slender column with a rectangular cross section was experimentally measured under three different temperature condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pressure vessel technology 2017-02, Vol.139 (1)
Hauptverfasser: Jo, Byeongnam, Okamoto, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to investigate the creep buckling behavior of a stainless steel column under axial compressive loading at extremely high temperatures. Creep buckling failure time of a slender column with a rectangular cross section was experimentally measured under three different temperature conditions, namely, 800, 900, and 1000 °C. At each temperature, axial compressive loads with magnitudes ranging between 15% and 80% of the buckling loads were applied to the top of the column, and the creep buckling failure time was measured to examine its relationship with the compressive load. The stainless steel column was found to fail within a relatively short time compared to that of creep deformation under tensile loading. An increase in the temperature of the column was found to accelerate creep buckling failure. The in-plane and out-of-plane column displacements, which respectively, corresponded to the axial and lateral displacements, were monitored during the entire experiment. The creep buckling behavior of the column was also visualized by a high-speed camera. Based on the Larson–Miller parameters (LMP) determined from the experimental results, an empirical correlation for predicting the creep buckling failure time was developed. Another empirical correlation for predicting the creep buckling failure time based on the lateral deflection rate was also derived.
ISSN:0094-9930
1528-8978
DOI:10.1115/1.4033155