Moving horizon closed‐loop production scheduling using dynamic process models

The economic circumstances that define the operation of chemical processes (e.g., product demand, feedstock and energy prices) are increasingly variable. To maximize profit, changes in production rate and product grade must be scheduled with increased frequency. To do so, process dynamics must be co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2017-02, Vol.63 (2), p.639-651
Hauptverfasser: Pattison, Richard C., Touretzky, Cara R., Harjunkoski, Iiro, Baldea, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 2
container_start_page 639
container_title AIChE journal
container_volume 63
creator Pattison, Richard C.
Touretzky, Cara R.
Harjunkoski, Iiro
Baldea, Michael
description The economic circumstances that define the operation of chemical processes (e.g., product demand, feedstock and energy prices) are increasingly variable. To maximize profit, changes in production rate and product grade must be scheduled with increased frequency. To do so, process dynamics must be considered in production scheduling calculations, and schedules should be recomputed when updated economic information becomes available. In this article, this need is addressed by introducing a novel moving horizon closed‐loop scheduling approach. Process dynamics are represented explicitly in the scheduling calculation via low‐order models of the closed‐loop dynamics of scheduling‐relevant variables, and a feedback connection is built based on these variables using an observer structure to update model states. The feedback rescheduling mechanism consists of, (a) periodic schedule updates that reflect updated price and demand forecasts, and, (b) event‐driven updates that account for process and market disturbances. The theoretical developments are demonstrated on the model of an industrial‐scale air separation unit. © 2016 American Institute of Chemical Engineers AIChE J, 63: 639–651, 2017
doi_str_mv 10.1002/aic.15408
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880020322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859500061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5408-19aabaef44a2351d22729024827a747a8f099deba6b7b0dda8b4e5e94232f8543</originalsourceid><addsrcrecordid>eNqN0c9OwyAYAHBiNHFOD75BEy966AYUWnpcFv8smdlFz4QCdSy0TFg18-Qj-Iw-idR6MjHxwhfgxwd8HwDnCE4QhHgqjJwgSiA7AKMYi5SWkB6CEYQQpXEBHYOTEDZxhguGR2B1715M-5SsnTdvrk2kdUGrz_cP69w22XqnOrkzcSPItVad7W0X-lHtW9EY2RupQ0gap7QNp-CoFjbos584Bo831w_zu3S5ul3MZ8tU9o9LUSlEJXRNiMAZRQrjApcQE4YLUZBCsBqWpdKVyKuigkoJVhFNdUlwhmtGSTYGl0PeeP1zp8OONyZIba1otesCR4zFcsAM439QWtJYnxxFevGLblzn2_iRXlGUM4TzqK4GJb0Lweuab71phN9zBHnfBR67wL-7EO10sK_G6v3fkM8W8-HEF_xpiO8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855168126</pqid></control><display><type>article</type><title>Moving horizon closed‐loop production scheduling using dynamic process models</title><source>Wiley Journals</source><creator>Pattison, Richard C. ; Touretzky, Cara R. ; Harjunkoski, Iiro ; Baldea, Michael</creator><creatorcontrib>Pattison, Richard C. ; Touretzky, Cara R. ; Harjunkoski, Iiro ; Baldea, Michael</creatorcontrib><description>The economic circumstances that define the operation of chemical processes (e.g., product demand, feedstock and energy prices) are increasingly variable. To maximize profit, changes in production rate and product grade must be scheduled with increased frequency. To do so, process dynamics must be considered in production scheduling calculations, and schedules should be recomputed when updated economic information becomes available. In this article, this need is addressed by introducing a novel moving horizon closed‐loop scheduling approach. Process dynamics are represented explicitly in the scheduling calculation via low‐order models of the closed‐loop dynamics of scheduling‐relevant variables, and a feedback connection is built based on these variables using an observer structure to update model states. The feedback rescheduling mechanism consists of, (a) periodic schedule updates that reflect updated price and demand forecasts, and, (b) event‐driven updates that account for process and market disturbances. The theoretical developments are demonstrated on the model of an industrial‐scale air separation unit. © 2016 American Institute of Chemical Engineers AIChE J, 63: 639–651, 2017</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15408</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>closed‐loop scheduling ; dynamic constraints ; Dynamics ; Economics ; Feedback ; Horizon ; Mathematical models ; moving horizon ; Production scheduling ; rescheduling ; Schedules ; Scheduling</subject><ispartof>AIChE journal, 2017-02, Vol.63 (2), p.639-651</ispartof><rights>2016 American Institute of Chemical Engineers</rights><rights>2017 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5408-19aabaef44a2351d22729024827a747a8f099deba6b7b0dda8b4e5e94232f8543</citedby><cites>FETCH-LOGICAL-c5408-19aabaef44a2351d22729024827a747a8f099deba6b7b0dda8b4e5e94232f8543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.15408$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.15408$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pattison, Richard C.</creatorcontrib><creatorcontrib>Touretzky, Cara R.</creatorcontrib><creatorcontrib>Harjunkoski, Iiro</creatorcontrib><creatorcontrib>Baldea, Michael</creatorcontrib><title>Moving horizon closed‐loop production scheduling using dynamic process models</title><title>AIChE journal</title><description>The economic circumstances that define the operation of chemical processes (e.g., product demand, feedstock and energy prices) are increasingly variable. To maximize profit, changes in production rate and product grade must be scheduled with increased frequency. To do so, process dynamics must be considered in production scheduling calculations, and schedules should be recomputed when updated economic information becomes available. In this article, this need is addressed by introducing a novel moving horizon closed‐loop scheduling approach. Process dynamics are represented explicitly in the scheduling calculation via low‐order models of the closed‐loop dynamics of scheduling‐relevant variables, and a feedback connection is built based on these variables using an observer structure to update model states. The feedback rescheduling mechanism consists of, (a) periodic schedule updates that reflect updated price and demand forecasts, and, (b) event‐driven updates that account for process and market disturbances. The theoretical developments are demonstrated on the model of an industrial‐scale air separation unit. © 2016 American Institute of Chemical Engineers AIChE J, 63: 639–651, 2017</description><subject>closed‐loop scheduling</subject><subject>dynamic constraints</subject><subject>Dynamics</subject><subject>Economics</subject><subject>Feedback</subject><subject>Horizon</subject><subject>Mathematical models</subject><subject>moving horizon</subject><subject>Production scheduling</subject><subject>rescheduling</subject><subject>Schedules</subject><subject>Scheduling</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0c9OwyAYAHBiNHFOD75BEy966AYUWnpcFv8smdlFz4QCdSy0TFg18-Qj-Iw-idR6MjHxwhfgxwd8HwDnCE4QhHgqjJwgSiA7AKMYi5SWkB6CEYQQpXEBHYOTEDZxhguGR2B1715M-5SsnTdvrk2kdUGrz_cP69w22XqnOrkzcSPItVad7W0X-lHtW9EY2RupQ0gap7QNp-CoFjbos584Bo831w_zu3S5ul3MZ8tU9o9LUSlEJXRNiMAZRQrjApcQE4YLUZBCsBqWpdKVyKuigkoJVhFNdUlwhmtGSTYGl0PeeP1zp8OONyZIba1otesCR4zFcsAM439QWtJYnxxFevGLblzn2_iRXlGUM4TzqK4GJb0Lweuab71phN9zBHnfBR67wL-7EO10sK_G6v3fkM8W8-HEF_xpiO8</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Pattison, Richard C.</creator><creator>Touretzky, Cara R.</creator><creator>Harjunkoski, Iiro</creator><creator>Baldea, Michael</creator><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201702</creationdate><title>Moving horizon closed‐loop production scheduling using dynamic process models</title><author>Pattison, Richard C. ; Touretzky, Cara R. ; Harjunkoski, Iiro ; Baldea, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5408-19aabaef44a2351d22729024827a747a8f099deba6b7b0dda8b4e5e94232f8543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>closed‐loop scheduling</topic><topic>dynamic constraints</topic><topic>Dynamics</topic><topic>Economics</topic><topic>Feedback</topic><topic>Horizon</topic><topic>Mathematical models</topic><topic>moving horizon</topic><topic>Production scheduling</topic><topic>rescheduling</topic><topic>Schedules</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pattison, Richard C.</creatorcontrib><creatorcontrib>Touretzky, Cara R.</creatorcontrib><creatorcontrib>Harjunkoski, Iiro</creatorcontrib><creatorcontrib>Baldea, Michael</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pattison, Richard C.</au><au>Touretzky, Cara R.</au><au>Harjunkoski, Iiro</au><au>Baldea, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving horizon closed‐loop production scheduling using dynamic process models</atitle><jtitle>AIChE journal</jtitle><date>2017-02</date><risdate>2017</risdate><volume>63</volume><issue>2</issue><spage>639</spage><epage>651</epage><pages>639-651</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>The economic circumstances that define the operation of chemical processes (e.g., product demand, feedstock and energy prices) are increasingly variable. To maximize profit, changes in production rate and product grade must be scheduled with increased frequency. To do so, process dynamics must be considered in production scheduling calculations, and schedules should be recomputed when updated economic information becomes available. In this article, this need is addressed by introducing a novel moving horizon closed‐loop scheduling approach. Process dynamics are represented explicitly in the scheduling calculation via low‐order models of the closed‐loop dynamics of scheduling‐relevant variables, and a feedback connection is built based on these variables using an observer structure to update model states. The feedback rescheduling mechanism consists of, (a) periodic schedule updates that reflect updated price and demand forecasts, and, (b) event‐driven updates that account for process and market disturbances. The theoretical developments are demonstrated on the model of an industrial‐scale air separation unit. © 2016 American Institute of Chemical Engineers AIChE J, 63: 639–651, 2017</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.15408</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2017-02, Vol.63 (2), p.639-651
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1880020322
source Wiley Journals
subjects closed‐loop scheduling
dynamic constraints
Dynamics
Economics
Feedback
Horizon
Mathematical models
moving horizon
Production scheduling
rescheduling
Schedules
Scheduling
title Moving horizon closed‐loop production scheduling using dynamic process models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20horizon%20closed%E2%80%90loop%20production%20scheduling%20using%20dynamic%20process%20models&rft.jtitle=AIChE%20journal&rft.au=Pattison,%20Richard%20C.&rft.date=2017-02&rft.volume=63&rft.issue=2&rft.spage=639&rft.epage=651&rft.pages=639-651&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.15408&rft_dat=%3Cproquest_cross%3E1859500061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855168126&rft_id=info:pmid/&rfr_iscdi=true