Moving horizon closed‐loop production scheduling using dynamic process models

The economic circumstances that define the operation of chemical processes (e.g., product demand, feedstock and energy prices) are increasingly variable. To maximize profit, changes in production rate and product grade must be scheduled with increased frequency. To do so, process dynamics must be co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2017-02, Vol.63 (2), p.639-651
Hauptverfasser: Pattison, Richard C., Touretzky, Cara R., Harjunkoski, Iiro, Baldea, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The economic circumstances that define the operation of chemical processes (e.g., product demand, feedstock and energy prices) are increasingly variable. To maximize profit, changes in production rate and product grade must be scheduled with increased frequency. To do so, process dynamics must be considered in production scheduling calculations, and schedules should be recomputed when updated economic information becomes available. In this article, this need is addressed by introducing a novel moving horizon closed‐loop scheduling approach. Process dynamics are represented explicitly in the scheduling calculation via low‐order models of the closed‐loop dynamics of scheduling‐relevant variables, and a feedback connection is built based on these variables using an observer structure to update model states. The feedback rescheduling mechanism consists of, (a) periodic schedule updates that reflect updated price and demand forecasts, and, (b) event‐driven updates that account for process and market disturbances. The theoretical developments are demonstrated on the model of an industrial‐scale air separation unit. © 2016 American Institute of Chemical Engineers AIChE J, 63: 639–651, 2017
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.15408