Sterilization of collagen scaffolds designed for peripheral nerve regeneration: Effect on microstructure, degradation and cellular colonization

In this study we investigated the impact of three different sterilization methods, dry heat (DHS), ethylene oxide (EtO) and electron beam radiation (β), on the properties of cylindrical collagen scaffolds with longitudinally oriented pore channels, specifically designed for peripheral nerve regenera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2017-02, Vol.71, p.335-344
Hauptverfasser: Monaco, Graziana, Cholas, Rahmatullah, Salvatore, Luca, Madaghiele, Marta, Sannino, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study we investigated the impact of three different sterilization methods, dry heat (DHS), ethylene oxide (EtO) and electron beam radiation (β), on the properties of cylindrical collagen scaffolds with longitudinally oriented pore channels, specifically designed for peripheral nerve regeneration. Scanning electron microscopy, mechanical testing, quantification of primary amines, differential scanning calorimetry and enzymatic degradation were performed to analyze possible structural and chemical changes induced by the sterilization. Moreover, in vitro proliferation and infiltration of the rat Schwann cell line RSC96 within the scaffolds was evaluated, up to 10days of culture. No major differences in morphology and compressive stiffness were observed among scaffolds sterilized by the different methods, as all samples showed approximately the same structure and stiffness as the unsterilized control. Proliferation, infiltration, distribution and morphology of RSC96 cells within the scaffolds were also comparable throughout the duration of the cell culture study, regardless of the sterilization treatment. However, we found a slight increase of chemical crosslinking upon sterilization (EtO
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2016.10.030