Light-Weight and Versatile Monitor for a Self-Adaptive Software Framework for IoT Systems

Today, various Internet of Things (IoT) devices and applications are being developed. Such IoT devices have different hardware (HW) and software (SW) capabilities; therefore, most applications require customization when IoT devices are changed or new applications are created. However, the applicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2016-01, Vol.2016 (2016), p.1-8
Hauptverfasser: Ha, Ok-Kyoon, Jung, YungJoon, Seok, Jong-Soo, Kim, Young-Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Today, various Internet of Things (IoT) devices and applications are being developed. Such IoT devices have different hardware (HW) and software (SW) capabilities; therefore, most applications require customization when IoT devices are changed or new applications are created. However, the applications executed on these devices are not optimized for power and performance because IoT device systems do not provide suitable static and dynamic information about fast-changing system resources and applications. Therefore, this paper proposes a light-weight and versatile monitor for a self-adaptive software framework to automatically control system resources according to the system status. The monitor helps running applications guarantee low power consumption and high performance for an optimal environment. The proposed monitor has two components: a monitoring component, which provides real-time static and dynamic information about system resources and applications, and a controlling component, which supports real-time control of system resources. For the experimental verification, we created a video transport system based on IoT devices and measured the CPU utilization by dynamic voltage and frequency scaling (DVFS) for the monitor. The results demonstrate that, for up to 50 monitored processes, the monitor shows an average CPU utilization of approximately 4% in the three DVFS modes and demonstrates maximum optimization in the Performance mode of DVFS.
ISSN:1687-725X
1687-7268
DOI:10.1155/2016/8085407