An Efficient Imperialist Competitive Algorithm for Solving the QFD Decision Problem

It is an important QFD decision problem to determine the engineering characteristics and their corresponding actual fulfillment levels. With the increasing complexity of actual engineering problems, the corresponding QFD matrixes become much huger, and the time spent on analyzing these matrixes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-13
Hauptverfasser: Guo, Hengdong, Yin, Fupeng, Gao, Qi, Ji, Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2016
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2016
creator Guo, Hengdong
Yin, Fupeng
Gao, Qi
Ji, Xue
description It is an important QFD decision problem to determine the engineering characteristics and their corresponding actual fulfillment levels. With the increasing complexity of actual engineering problems, the corresponding QFD matrixes become much huger, and the time spent on analyzing these matrixes and making decisions will be unacceptable. In this paper, a solution for efficiently solving the QFD decision problem is proposed. The QFD decision problem is reformulated as a mixed integer nonlinear programming (MINLP) model, which aims to maximize overall customer satisfaction with the consideration of the enterprises’ capability, cost, and resource constraints. And then an improved algorithm G-ICA, a combination of Imperialist Competitive Algorithm (ICA) and genetic algorithm (GA), is proposed to tackle this model. The G-ICA is compared with other mature algorithms by solving 7 numerical MINLP problems and 4 adapted QFD decision problems with different scales. The results verify a satisfied global optimization performance and time performance of the G-ICA. Meanwhile, the proposed algorithm’s better capabilities to guarantee decision-making accuracy and efficiency are also proved.
doi_str_mv 10.1155/2016/2601561
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880015907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4270612251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-20ad17b524482107700b14ae71f08f08d8d48330d561762cc1a49423be0159033</originalsourceid><addsrcrecordid>eNqF0N9LwzAQB_AiCs7pm88S8EXQursk_fU49kMHA5Up-FbSNt0y2mYm3cT_3swOBF8MB5eDDyH39bxLhHvEIBhQwHBAQ8AgxCOv5xrzA-TRsbsD5T5S9n7qnVm7BqAYYNzzFsOGTMpS5Uo2LZnVG2mUqJRtyUi7oVWt2kkyrJbaqHZVk1IbstDVTjVL0q4keZmOyVjmyirdkGejs0rW595JKSorLw69771NJ6-jR3_-9DAbDed-zhLW-hREgVEWUM5jihBFABlyISMsIXZVxAWPGYPCbROFNM9R8IRTlkm3YAKM9b2b7t2N0R9badu0VjaXVSUaqbc2xTiGHxo5ev2HrvXWNO53TvEQ4oQCOHXXqdxoa40s041RtTBfKUK6TzjdJ5weEnb8tuMr1RTiU_2nrzotnZGl-NXuJIDsG0hCgW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846089200</pqid></control><display><type>article</type><title>An Efficient Imperialist Competitive Algorithm for Solving the QFD Decision Problem</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Hengdong ; Yin, Fupeng ; Gao, Qi ; Ji, Xue</creator><contributor>Mussetta, Marco</contributor><creatorcontrib>Guo, Hengdong ; Yin, Fupeng ; Gao, Qi ; Ji, Xue ; Mussetta, Marco</creatorcontrib><description>It is an important QFD decision problem to determine the engineering characteristics and their corresponding actual fulfillment levels. With the increasing complexity of actual engineering problems, the corresponding QFD matrixes become much huger, and the time spent on analyzing these matrixes and making decisions will be unacceptable. In this paper, a solution for efficiently solving the QFD decision problem is proposed. The QFD decision problem is reformulated as a mixed integer nonlinear programming (MINLP) model, which aims to maximize overall customer satisfaction with the consideration of the enterprises’ capability, cost, and resource constraints. And then an improved algorithm G-ICA, a combination of Imperialist Competitive Algorithm (ICA) and genetic algorithm (GA), is proposed to tackle this model. The G-ICA is compared with other mature algorithms by solving 7 numerical MINLP problems and 4 adapted QFD decision problems with different scales. The results verify a satisfied global optimization performance and time performance of the G-ICA. Meanwhile, the proposed algorithm’s better capabilities to guarantee decision-making accuracy and efficiency are also proved.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2016/2601561</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Cost analysis ; Customer satisfaction ; Decision making ; Design ; Efficiency ; Engineering ; Evolutionary algorithms ; Genetic algorithms ; Global optimization ; Integer programming ; Linear programming ; Mathematical models ; Mixed integer ; Nonlinear programming ; Optimization ; Optimization techniques ; Process planning ; Product development</subject><ispartof>Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-13</ispartof><rights>Copyright © 2016 Xue Ji et al.</rights><rights>Copyright © 2016 Xue Ji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-20ad17b524482107700b14ae71f08f08d8d48330d561762cc1a49423be0159033</citedby><cites>FETCH-LOGICAL-c393t-20ad17b524482107700b14ae71f08f08d8d48330d561762cc1a49423be0159033</cites><orcidid>0000-0003-4063-7877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Mussetta, Marco</contributor><creatorcontrib>Guo, Hengdong</creatorcontrib><creatorcontrib>Yin, Fupeng</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Ji, Xue</creatorcontrib><title>An Efficient Imperialist Competitive Algorithm for Solving the QFD Decision Problem</title><title>Mathematical problems in engineering</title><description>It is an important QFD decision problem to determine the engineering characteristics and their corresponding actual fulfillment levels. With the increasing complexity of actual engineering problems, the corresponding QFD matrixes become much huger, and the time spent on analyzing these matrixes and making decisions will be unacceptable. In this paper, a solution for efficiently solving the QFD decision problem is proposed. The QFD decision problem is reformulated as a mixed integer nonlinear programming (MINLP) model, which aims to maximize overall customer satisfaction with the consideration of the enterprises’ capability, cost, and resource constraints. And then an improved algorithm G-ICA, a combination of Imperialist Competitive Algorithm (ICA) and genetic algorithm (GA), is proposed to tackle this model. The G-ICA is compared with other mature algorithms by solving 7 numerical MINLP problems and 4 adapted QFD decision problems with different scales. The results verify a satisfied global optimization performance and time performance of the G-ICA. Meanwhile, the proposed algorithm’s better capabilities to guarantee decision-making accuracy and efficiency are also proved.</description><subject>Algorithms</subject><subject>Cost analysis</subject><subject>Customer satisfaction</subject><subject>Decision making</subject><subject>Design</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Mixed integer</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Process planning</subject><subject>Product development</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0N9LwzAQB_AiCs7pm88S8EXQursk_fU49kMHA5Up-FbSNt0y2mYm3cT_3swOBF8MB5eDDyH39bxLhHvEIBhQwHBAQ8AgxCOv5xrzA-TRsbsD5T5S9n7qnVm7BqAYYNzzFsOGTMpS5Uo2LZnVG2mUqJRtyUi7oVWt2kkyrJbaqHZVk1IbstDVTjVL0q4keZmOyVjmyirdkGejs0rW595JKSorLw69771NJ6-jR3_-9DAbDed-zhLW-hREgVEWUM5jihBFABlyISMsIXZVxAWPGYPCbROFNM9R8IRTlkm3YAKM9b2b7t2N0R9badu0VjaXVSUaqbc2xTiGHxo5ev2HrvXWNO53TvEQ4oQCOHXXqdxoa40s041RtTBfKUK6TzjdJ5weEnb8tuMr1RTiU_2nrzotnZGl-NXuJIDsG0hCgW8</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Guo, Hengdong</creator><creator>Yin, Fupeng</creator><creator>Gao, Qi</creator><creator>Ji, Xue</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4063-7877</orcidid></search><sort><creationdate>20160101</creationdate><title>An Efficient Imperialist Competitive Algorithm for Solving the QFD Decision Problem</title><author>Guo, Hengdong ; Yin, Fupeng ; Gao, Qi ; Ji, Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-20ad17b524482107700b14ae71f08f08d8d48330d561762cc1a49423be0159033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Cost analysis</topic><topic>Customer satisfaction</topic><topic>Decision making</topic><topic>Design</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Mixed integer</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Process planning</topic><topic>Product development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hengdong</creatorcontrib><creatorcontrib>Yin, Fupeng</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Ji, Xue</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hengdong</au><au>Yin, Fupeng</au><au>Gao, Qi</au><au>Ji, Xue</au><au>Mussetta, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Imperialist Competitive Algorithm for Solving the QFD Decision Problem</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>It is an important QFD decision problem to determine the engineering characteristics and their corresponding actual fulfillment levels. With the increasing complexity of actual engineering problems, the corresponding QFD matrixes become much huger, and the time spent on analyzing these matrixes and making decisions will be unacceptable. In this paper, a solution for efficiently solving the QFD decision problem is proposed. The QFD decision problem is reformulated as a mixed integer nonlinear programming (MINLP) model, which aims to maximize overall customer satisfaction with the consideration of the enterprises’ capability, cost, and resource constraints. And then an improved algorithm G-ICA, a combination of Imperialist Competitive Algorithm (ICA) and genetic algorithm (GA), is proposed to tackle this model. The G-ICA is compared with other mature algorithms by solving 7 numerical MINLP problems and 4 adapted QFD decision problems with different scales. The results verify a satisfied global optimization performance and time performance of the G-ICA. Meanwhile, the proposed algorithm’s better capabilities to guarantee decision-making accuracy and efficiency are also proved.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/2601561</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4063-7877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2016-01, Vol.2016 (2016), p.1-13
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1880015907
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Cost analysis
Customer satisfaction
Decision making
Design
Efficiency
Engineering
Evolutionary algorithms
Genetic algorithms
Global optimization
Integer programming
Linear programming
Mathematical models
Mixed integer
Nonlinear programming
Optimization
Optimization techniques
Process planning
Product development
title An Efficient Imperialist Competitive Algorithm for Solving the QFD Decision Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Imperialist%20Competitive%20Algorithm%20for%20Solving%20the%20QFD%20Decision%20Problem&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Guo,%20Hengdong&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2016/2601561&rft_dat=%3Cproquest_cross%3E4270612251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846089200&rft_id=info:pmid/&rfr_iscdi=true