An Efficient Imperialist Competitive Algorithm for Solving the QFD Decision Problem

It is an important QFD decision problem to determine the engineering characteristics and their corresponding actual fulfillment levels. With the increasing complexity of actual engineering problems, the corresponding QFD matrixes become much huger, and the time spent on analyzing these matrixes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2016-01, Vol.2016 (2016), p.1-13
Hauptverfasser: Guo, Hengdong, Yin, Fupeng, Gao, Qi, Ji, Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is an important QFD decision problem to determine the engineering characteristics and their corresponding actual fulfillment levels. With the increasing complexity of actual engineering problems, the corresponding QFD matrixes become much huger, and the time spent on analyzing these matrixes and making decisions will be unacceptable. In this paper, a solution for efficiently solving the QFD decision problem is proposed. The QFD decision problem is reformulated as a mixed integer nonlinear programming (MINLP) model, which aims to maximize overall customer satisfaction with the consideration of the enterprises’ capability, cost, and resource constraints. And then an improved algorithm G-ICA, a combination of Imperialist Competitive Algorithm (ICA) and genetic algorithm (GA), is proposed to tackle this model. The G-ICA is compared with other mature algorithms by solving 7 numerical MINLP problems and 4 adapted QFD decision problems with different scales. The results verify a satisfied global optimization performance and time performance of the G-ICA. Meanwhile, the proposed algorithm’s better capabilities to guarantee decision-making accuracy and efficiency are also proved.
ISSN:1024-123X
1563-5147
DOI:10.1155/2016/2601561