An analysis of the role of nonreactive plasticizers in the crosslinking reactions of a rigid resin

ABSTRACT A uniform dispersion of reactants is necessary to achieve a complete reaction involving multiple components. Using a combination of infrared spectroscopy, thermal analysis, and low field NMR, we have elucidated the role of a new class of nonreactive plasticizers on the crosslinking reaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2017-01, Vol.55 (2), p.206-213
Hauptverfasser: Patel, Jigneshkumar P., Deshmukh, Subrajeet, Zhao, Caixia, Wamuo, Onyenkachi, Hsu, Shaw Ling, Schoch, Andrew B., Carleen, Sena Ada, Matsumoto, Dean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT A uniform dispersion of reactants is necessary to achieve a complete reaction involving multiple components. Using a combination of infrared spectroscopy, thermal analysis, and low field NMR, we have elucidated the role of a new class of nonreactive plasticizers on the crosslinking reaction between hexamethylenetetramine (HMTA) and phenol formaldehyde resin. These two seemingly dissimilar reactants are responsible for the exceptionally high mechanical strength in a number of organic–inorganic composites. The efficiency of the curing reaction is characterized by the changing functionality of HMTA. Infrared active vibrations are used to characterize the changing molecular structures as a function of temperature. The T1 spin‐lattice relaxation time is used for the characterization of segmental dynamics of the chains in the formation of the crosslinked product. The segmental mobility depends on the amount of crosslinking and the stiffness of the chain. This study shows that this new class of nonreactive plasticizer can induce highly crosslinked structures without any of the environmental impact of the current technology. An efficient crosslinking reaction in phenolic resin can be achieved by using methyl benzoate as a nonreacting plasticizer. Low field NMR, in conjunction with infrared spectroscopy (mid and near) and DSC, clarified the crosslinking reaction mechanism and the ensuing structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 206–213 An efficient crosslinking reaction in phenolic resin can be achieved by using methyl benzoate as a non‐reacting plasticizer. Low field NMR, in conjunction with infrared spectroscopy (mid‐ and near‐) and DSC, clarified the crosslinking reaction mechanism and the ensuing structure.
ISSN:0887-6266
1099-0488
DOI:10.1002/polb.24261