Development of an improved aerosol product over the Indian subcontinent: Blending model, satellite, and ground‐based estimates

A comprehensive assessment of the aerosol optical depth (AOD) at 550 nm from European Centre for Medium‐Range Weather Forecasts (ECMWF), Moderate Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer (MISR) has been performed with respect to the Aerosol Robotic Netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2017-01, Vol.122 (1), p.367-390
Hauptverfasser: Singh, Randhir, Singh, Charu, Ojha, Satya P., Kumar, A. Senthil, Kumar, A. S. Kiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A comprehensive assessment of the aerosol optical depth (AOD) at 550 nm from European Centre for Medium‐Range Weather Forecasts (ECMWF), Moderate Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer (MISR) has been performed with respect to the Aerosol Robotic Network (AERONET) measurements at 35 locations over the Indian subcontinent. For all of the stations, the mean relative errors for the collocated ECMWF, MODIS, and MISR AOD are 46.15%, 41.81%, and 39.98%, respectively. Compared with AERONET, ECMWF estimates suffer from a negative bias, whereas MODIS and MISR estimates suffer from a positive bias. The correlation of ECMWF, MODIS, and MISR AOD with AERONET observation is 0.73, 0.80, and 0.78, respectively. Analysis shows that approximately 52.12% of ECMWF, 60.51% of MODIS, and 62.63% of MISR AOD fall within the error envelopes (± 0.05 ± 0.15AODAERONET) of validation data from AERONET. This analysis indicates that both modeled and space‐based AOD measurements have large discrepancies over the Indian subcontinent. Due to the aerosol's significant role in altering the Earth radiation budget, there is an urgent need to develop an AOD product with reduced error. Therefore, a new AOD product at 550 nm has been developed using an optimum interpolation (OI) technique. For this purpose, a model‐derived AOD from ECMWF, remotely sensed AOD from MODIS, MISR, and in situ measured AOD from AERONET have been blended using the OI technique. A new product has been generated for 13 years (2003 to 2015) at 0.25° by 0.25° latitude/longitude and daily temporal resolution over the Indian subcontinent. When compared with AERONET observations, the new product has a negligible bias, with a mean relative error of 12.31% and a correlation of 0.99. Key Points Large systematic and random differences are seen in the ECMWF, MISR, and MODIS AOD A merged AOD product is generated for 13 years over the Indian subcontinent The merged AOD shows good agreement with AERONET observations
ISSN:2169-897X
2169-8996
DOI:10.1002/2016JD025335