Policy search for multi-robot coordination under uncertainty
We introduce a principled method for multi-robot coordination based on a general model (termed a MacDec-POMDP) of multi-robot cooperative planning in the presence of stochasticity, uncertain sensing, and communication limitations. A new MacDec-POMDP planning algorithm is presented that searches over...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2016-12, Vol.35 (14), p.1760-1778 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a principled method for multi-robot coordination based on a general model (termed a MacDec-POMDP) of multi-robot cooperative planning in the presence of stochasticity, uncertain sensing, and communication limitations. A new MacDec-POMDP planning algorithm is presented that searches over policies represented as finite-state controllers, rather than the previous policy tree representation. Finite-state controllers can be much more concise than trees, are much easier to interpret, and can operate over an infinite horizon. The resulting policy search algorithm requires a substantially simpler simulator that models only the outcomes of executing a given set of motor controllers, not the details of the executions themselves and can solve significantly larger problems than existing MacDec-POMDP planners. We demonstrate significant performance improvements over previous methods and show that our method can be used for actual multi-robot systems through experiments on a cooperative multi-robot bartending domain. |
---|---|
ISSN: | 0278-3649 1741-3176 |
DOI: | 10.1177/0278364916679611 |