3D-Matrix Based on Bioactive Glass and Calcium Phosphates with Controllable Resorption Rate for Bone Tissue Replacement
A 3D-matrix is obtained on the basis of sintered composite material from bioactive glass and dicalcium phosphate. The effect of the component ratio of the mix and the firing temperature of the blanks on the phase composition, porosity, strength, and dissolution kinetics of sintered samples is determ...
Gespeichert in:
Veröffentlicht in: | Glass and ceramics 2017, Vol.73 (9-10), p.342-347 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 3D-matrix is obtained on the basis of sintered composite material from bioactive glass and dicalcium phosphate. The effect of the component ratio of the mix and the firing temperature of the blanks on the phase composition, porosity, strength, and dissolution kinetics of sintered samples is determined. It is shown that directed formation is possible in sintered composites of highly resorbable phases. 3D-Modeling is used to obtain a personalized implant. |
---|---|
ISSN: | 0361-7610 1573-8515 |
DOI: | 10.1007/s10717-017-9886-3 |