Magnon Hall effect in AB-stacked bilayer honeycomb quantum magnets
Motivated by the fact that many bilayer quantum magnets occur in nature, we generalize the study of thermal Hall transports of spin excitations to bilayer magnetic systems. It is shown that bilayer magnetic systems can be coupled either ferromagnetically or antiferromagnetically. We study both scena...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-09, Vol.94 (9), Article 094405 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the fact that many bilayer quantum magnets occur in nature, we generalize the study of thermal Hall transports of spin excitations to bilayer magnetic systems. It is shown that bilayer magnetic systems can be coupled either ferromagnetically or antiferromagnetically. We study both scenarios on the honeycomb lattice and show that the system realizes topologically nontrivial magnon bands induced by alternating next-nearest-neighbor Dzyaloshinsky-Moriya interaction. As a result, the bilayer system realizes both magnon Hall effect and magnon spin Nernst effect. We show that antiferromagnetically coupled layers differ from ferromagnetically coupled layers by a sign change in the conductivities as the magnetic field is reversed. Furthermore, Chern number protected magnon edge states are observed and propagate in the same direction on the top and bottom layers in ferromagnetically coupled layers, whereas the magnon edge states propagate in opposite directions for antiferromagnetically coupled layers. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.94.094405 |