A New Algorithm for Reducing Components of a Gaussian Mixture Model

In statistical methods, such as statistical static timing analysis, Gaussian mixture model (GMM) is a useful tool for representing a non-Gaussian distribution and handling correlation easily. In order to repeat various statistical operations such as summation and maximum for GMMs efficiently, the nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2016/12/01, Vol.E99.A(12), pp.2425-2434
Hauptverfasser: YOKOYAMA, Naoya, AZUMA, Daiki, TSUKIYAMA, Shuji, FUKUI, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In statistical methods, such as statistical static timing analysis, Gaussian mixture model (GMM) is a useful tool for representing a non-Gaussian distribution and handling correlation easily. In order to repeat various statistical operations such as summation and maximum for GMMs efficiently, the number of components should be restricted around two. In this paper, we propose a method for reducing the number of components of a given GMM to two (2-GMM). Moreover, since the distribution of each component is represented often by a linear combination of some explanatory variables, we propose a method to compute the covariance between each explanatory variable and the obtained 2-GMM, that is, the sensitivity of 2-GMM to each explanatory variable. In order to evaluate the performance of the proposed methods, we show some experimental results. The proposed methods minimize the normalized integral square error of probability density function of 2-GMM by the sacrifice of the accuracy of sensitivities of 2-GMM.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.E99.A.2425