Fast and accurate computation of normalized Bargmann transform

The linear canonical transform (LCT) was extended to complex-valued parameters, called complex LCT, to describe the complex amplitude propagation through lossy or lossless optical systems. Bargmann transform is a special case of the complex LCT. In this paper, we normalize the Bargmann transform suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2017-01, Vol.34 (1), p.18-26
Hauptverfasser: Pei, Soo-Chang, Huang, Shih-Gu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The linear canonical transform (LCT) was extended to complex-valued parameters, called complex LCT, to describe the complex amplitude propagation through lossy or lossless optical systems. Bargmann transform is a special case of the complex LCT. In this paper, we normalize the Bargmann transform such that it can be bounded near infinity. We derive the relationships of the normalized Bargmann transform to Gabor transform, Hermite-Gaussian functions, gyrator transform, and 2D nonseparable LCT. Several kinds of fast and accurate computational methods of the normalized Bargmann transform and its inverse are proposed based on these relationships.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.34.000018