High-order ADI scheme for option pricing in stochastic volatility models

We propose a new high-order alternating direction implicit (ADI) finite difference scheme for the solution of initial–boundary value problems of convection–diffusion type with mixed derivatives and non-constant coefficients, as they arise from stochastic volatility models in option pricing. Our appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-05, Vol.316, p.109-121
Hauptverfasser: Düring, Bertram, Miles, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new high-order alternating direction implicit (ADI) finite difference scheme for the solution of initial–boundary value problems of convection–diffusion type with mixed derivatives and non-constant coefficients, as they arise from stochastic volatility models in option pricing. Our approach combines different high-order spatial discretisations with Hundsdorfer and Verwer’s ADI time-stepping method, to obtain an efficient method which is fourth-order accurate in space and second-order accurate in time. Numerical experiments for the European put option pricing problem using Heston’s stochastic volatility model confirm the high-order convergence.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2016.09.040