On a family of self-affine sets: Topology, uniqueness, simultaneous expansions

Let $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}>1$ and $T_{i}(x,y)=((x+i)/\unicode[STIX]{x1D6FD}_{1},(y+i)/\unicode[STIX]{x1D6FD}_{2}),i\in \{\pm 1\}$ . Let $A:=A_{\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}}$ be the unique compact set satisfying $A=T_{1}(A)\cup T_{-1}(A)$ ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2017-02, Vol.37 (1), p.193-227
Hauptverfasser: HARE, KEVIN G., SIDOROV, NIKITA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}>1$ and $T_{i}(x,y)=((x+i)/\unicode[STIX]{x1D6FD}_{1},(y+i)/\unicode[STIX]{x1D6FD}_{2}),i\in \{\pm 1\}$ . Let $A:=A_{\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}}$ be the unique compact set satisfying $A=T_{1}(A)\cup T_{-1}(A)$ . In this paper, we give a detailed analysis of $A$ and the parameters $(\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2})$ where $A$ satisfies various topological properties. In particular, we show that if $\unicode[STIX]{x1D6FD}_{1}
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2015.41