On a family of self-affine sets: Topology, uniqueness, simultaneous expansions
Let $\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}>1$ and $T_{i}(x,y)=((x+i)/\unicode[STIX]{x1D6FD}_{1},(y+i)/\unicode[STIX]{x1D6FD}_{2}),i\in \{\pm 1\}$ . Let $A:=A_{\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}}$ be the unique compact set satisfying $A=T_{1}(A)\cup T_{-1}(A)$ ....
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2017-02, Vol.37 (1), p.193-227 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}>1$
and
$T_{i}(x,y)=((x+i)/\unicode[STIX]{x1D6FD}_{1},(y+i)/\unicode[STIX]{x1D6FD}_{2}),i\in \{\pm 1\}$
. Let
$A:=A_{\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2}}$
be the unique compact set satisfying
$A=T_{1}(A)\cup T_{-1}(A)$
. In this paper, we give a detailed analysis of
$A$
and the parameters
$(\unicode[STIX]{x1D6FD}_{1},\unicode[STIX]{x1D6FD}_{2})$
where
$A$
satisfies various topological properties. In particular, we show that if
$\unicode[STIX]{x1D6FD}_{1} |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2015.41 |