Non-divergence of unipotent flows on quotients of rank-one semisimple groups
Let $G$ be a semisimple Lie group of rank one and $\unicode[STIX]{x1D6E4}$ be a torsion-free discrete subgroup of $G$ . We show that in $G/\unicode[STIX]{x1D6E4}$ , given $\unicode[STIX]{x1D716}>0$ , any trajectory of a unipotent flow remains in the set of points with injectivity radius larger th...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2017-02, Vol.37 (1), p.103-128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$G$
be a semisimple Lie group of rank one and
$\unicode[STIX]{x1D6E4}$
be a torsion-free discrete subgroup of
$G$
. We show that in
$G/\unicode[STIX]{x1D6E4}$
, given
$\unicode[STIX]{x1D716}>0$
, any trajectory of a unipotent flow remains in the set of points with injectivity radius larger than
$\unicode[STIX]{x1D6FF}$
for a
$1-\unicode[STIX]{x1D716}$
proportion of the time, for some
$\unicode[STIX]{x1D6FF}>0$
. The result also holds for any finitely generated discrete subgroup
$\unicode[STIX]{x1D6E4}$
and this generalizes Dani’s quantitative non-divergence theorem [On orbits of unipotent flows on homogeneous spaces. Ergod. Th. & Dynam. Sys.
4(1) (1984), 25–34] for lattices of rank-one semisimple groups. Furthermore, for a fixed
$\unicode[STIX]{x1D716}>0$
, there exists an injectivity radius
$\unicode[STIX]{x1D6FF}$
such that, for any unipotent trajectory
$\{u_{t}g\unicode[STIX]{x1D6E4}\}_{t\in [0,T]}$
, either it spends at least a
$1-\unicode[STIX]{x1D716}$
proportion of the time in the set with injectivity radius larger than
$\unicode[STIX]{x1D6FF}$
, for all large
$T>0$
, or there exists a
$\{u_{t}\}_{t\in \mathbb{R}}$
-normalized abelian subgroup
$L$
of
$G$
which intersects
$g\unicode[STIX]{x1D6E4}g^{-1}$
in a small covolume lattice. We also extend these results to when
$G$
is the product of rank-one semisimple groups and
$\unicode[STIX]{x1D6E4}$
a discrete subgroup of
$G$
whose projection onto each non-trivial factor is torsion free. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2015.43 |