Non-divergence of unipotent flows on quotients of rank-one semisimple groups

Let $G$ be a semisimple Lie group of rank one and $\unicode[STIX]{x1D6E4}$ be a torsion-free discrete subgroup of $G$ . We show that in $G/\unicode[STIX]{x1D6E4}$ , given $\unicode[STIX]{x1D716}>0$ , any trajectory of a unipotent flow remains in the set of points with injectivity radius larger th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2017-02, Vol.37 (1), p.103-128
Hauptverfasser: BUENGER, C. DAVIS, ZHENG, CHENG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $G$ be a semisimple Lie group of rank one and $\unicode[STIX]{x1D6E4}$ be a torsion-free discrete subgroup of $G$ . We show that in $G/\unicode[STIX]{x1D6E4}$ , given $\unicode[STIX]{x1D716}>0$ , any trajectory of a unipotent flow remains in the set of points with injectivity radius larger than $\unicode[STIX]{x1D6FF}$ for a $1-\unicode[STIX]{x1D716}$ proportion of the time, for some $\unicode[STIX]{x1D6FF}>0$ . The result also holds for any finitely generated discrete subgroup $\unicode[STIX]{x1D6E4}$ and this generalizes Dani’s quantitative non-divergence theorem [On orbits of unipotent flows on homogeneous spaces. Ergod. Th. & Dynam. Sys. 4(1) (1984), 25–34] for lattices of rank-one semisimple groups. Furthermore, for a fixed $\unicode[STIX]{x1D716}>0$ , there exists an injectivity radius $\unicode[STIX]{x1D6FF}$ such that, for any unipotent trajectory $\{u_{t}g\unicode[STIX]{x1D6E4}\}_{t\in [0,T]}$ , either it spends at least a $1-\unicode[STIX]{x1D716}$ proportion of the time in the set with injectivity radius larger than $\unicode[STIX]{x1D6FF}$ , for all large $T>0$ , or there exists a $\{u_{t}\}_{t\in \mathbb{R}}$ -normalized abelian subgroup $L$ of $G$ which intersects $g\unicode[STIX]{x1D6E4}g^{-1}$ in a small covolume lattice. We also extend these results to when $G$ is the product of rank-one semisimple groups and $\unicode[STIX]{x1D6E4}$ a discrete subgroup of $G$ whose projection onto each non-trivial factor is torsion free.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2015.43