A comparison of marginal odds ratio estimators

Uses of the propensity score to obtain estimates of causal effect have been investigated thoroughly under assumptions of linearity and additivity of exposure effect. When the outcome variable is binary relationships such as collapsibility, valid for the linear model, do not always hold. This article...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2017-02, Vol.26 (1), p.155-175
Hauptverfasser: Loux, Travis M, Drake, Christiana, Smith-Gagen, Julie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uses of the propensity score to obtain estimates of causal effect have been investigated thoroughly under assumptions of linearity and additivity of exposure effect. When the outcome variable is binary relationships such as collapsibility, valid for the linear model, do not always hold. This article examines uses of the propensity score when both exposure and outcome are binary variables and the parameter of interest is the marginal odds ratio. We review stratification and matching by the propensity score when calculating the Mantel–Haenszel estimator and show that it is consistent for neither the marginal nor conditional odds ratio. We also investigate a marginal odds ratio estimator based on doubly robust estimators and summarize its performance relative to other recently proposed estimators under various conditions, including low exposure prevalence and model misspecification. Finally, we apply all estimators to a case study estimating the effect of Medicare plan type on the quality of care received by African-American breast cancer patients.
ISSN:0962-2802
1477-0334
DOI:10.1177/0962280214541995