A posteriori error analysis for nonconforming approximation of multiple eigenvalues
In this paper, we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, and C. Padra, Appl. Numer. Math., 2012, for the approximation of the Laplace eigenvalue problem with Crouzeix–Raviart nonconforming finite elements. In particular, we show that the estimator is robust also in...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2017-01, Vol.40 (2), p.350-369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study an a posteriori error indicator introduced in E. Dari, R.G. Durán, and C. Padra, Appl. Numer. Math., 2012, for the approximation of the Laplace eigenvalue problem with Crouzeix–Raviart nonconforming finite elements. In particular, we show that the estimator is robust also in presence of eigenvalues of multiplicity greater than one. Some numerical examples confirm the theory and illustrate the convergence of an adaptive algorithm when dealing with multiple eigenvalues. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3452 |