Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses
The stability of the solutions of a nonlinear differential equation with noninstantaneous impulses is studied using Lyapunov like functions. In these differential equation we have impulses, which start abruptly at some points and their action continue on given finite intervals. Sufficient conditions...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2017-02, Vol.53 (1-2), p.147-168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stability of the solutions of a nonlinear differential equation with noninstantaneous impulses is studied using Lyapunov like functions. In these differential equation we have impulses, which start abruptly at some points and their action continue on given finite intervals. Sufficient conditions for stability, uniform stability and asymptotic uniform stability of the solutions are established. Examples are given to illustrate the results. Also, some of the results are applied to study a dynamical model in Pharmacokinetics. |
---|---|
ISSN: | 1598-5865 1865-2085 |
DOI: | 10.1007/s12190-015-0961-z |