Systems of semilinear evolution inequalities with temporal fractional derivative on the Heisenberg group
We investigate nonexistence results of nontrivial solutions of fractional differential inequalities of the form ( FS q m ) : { D 0 / t q x i − Δ H ( λ i x i ) ≥ | η | α i + 1 | x i + 1 | β i + 1 , ( η , t ) ∈ H N × ] 0 , + ∞ [ , 1 ≤ i ≤ m , x m + 1 = x 1 , where D 0 / t q is the time-fractional deri...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2017-01, Vol.2017 (1), p.1-15, Article 12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate nonexistence results of nontrivial solutions of fractional differential inequalities of the form
(
FS
q
m
)
:
{
D
0
/
t
q
x
i
−
Δ
H
(
λ
i
x
i
)
≥
|
η
|
α
i
+
1
|
x
i
+
1
|
β
i
+
1
,
(
η
,
t
)
∈
H
N
×
]
0
,
+
∞
[
,
1
≤
i
≤
m
,
x
m
+
1
=
x
1
,
where
D
0
/
t
q
is the time-fractional derivative of order
q
∈
(
1
,
2
)
in the sense of Caputo,
Δ
H
is the Laplacian in the
(
2
N
+
1
)
-dimensional Heisenberg group
H
N
,
|
η
|
is the distance from
η
in
H
N
to the origin,
m
≥
2
,
α
m
+
1
=
α
1
,
β
m
+
1
=
β
1
, and
λ
i
∈
L
∞
(
H
N
×
]
0
,
+
∞
[
)
,
1
≤
i
≤
m
. The main results are concerned with
Q
≡
2
N
+
2
, less than the critical exponents that depend on
q
,
α
i
, and
β
i
,
1
≤
i
≤
m
. For
q
=
2
, we deduce the results given by El Hamidi and Kirane (Abstr. Appl. Anal. 2004(2):155-164,
2004
) and El Hamidi and Obeid (J. Math. Anal. Appl. 208(1):77-90,
2003
) from the hyperbolic systems. For
m
=
1
, we study the scalar case
(
FI
q
)
:
D
0
/
t
q
x
−
Δ
H
(
λ
x
)
≥
|
η
|
α
|
x
|
β
,
where
β
>
1
,
α
are real parameters. In the last case, for
q
=
2
, we return to the approach of Pohozaev and Véron (Manuscr. Math. 102:85-99,
2000
) from the hyperbolic inequalities. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-016-1070-5 |