Study on the Performances Properties of Medical Pure Magnesium by Ion Implantation of Nitrogen
To improve medical pure magnesium corrosion and wear resistance, the advanced plasma implantation technology were used to implanted medical pure magnesium with nitrogen ions under certain conditions, obtaining a certain depth of nitrogen ion implantation layer, and to study the surface properties of...
Gespeichert in:
Veröffentlicht in: | Advanced Materials Research 2017-01, Vol.1142, p.31-36 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To improve medical pure magnesium corrosion and wear resistance, the advanced plasma implantation technology were used to implanted medical pure magnesium with nitrogen ions under certain conditions, obtaining a certain depth of nitrogen ion implantation layer, and to study the surface properties of the implantation layer. The sample after ion implanted, the surface morphology, phase composition were analyzed, and have electro chemical corrosion tests, friction and wear tests, the results showed that: pure magnesium by nitrogen ion implantation, can be obtained a surface organizations which whole flat, compact, no surface cracks and holes; the surface implantation layer mainly composed of Mg and MgO, also found a small amount of Mg3N2, which is also the main reason for corrosion and wear resistance improved; compared to pure magnesium base, nitrogen ion implantation (process conditions: implantation energy: 40KeV, implantation dose: 3×1017ions/cm2, control temperature: 200°C) improved the corrosion resistance of the sample, but not obvious, about 1.2%; however, the friction coefficient decreased significantly, approximately 61%, the amount of wear also reduced significantly, about 74%, this means that, its wear resistance has been improved significantly. This study provides a reference to improve the surface properties of pure magnesium and be learned to develop a more reasonable parameters for further study of medical pure magnesium by ion implantation of nitrogen. |
---|---|
ISSN: | 1022-6680 1662-8985 1662-8985 |
DOI: | 10.4028/www.scientific.net/AMR.1142.31 |