Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences

Weather nowcasting comprises the detailed description of the current weather along with forecasts obtained by extrapolation for very short-range period of zero to six hours ahead. It is particularly useful when forecasting complicated processes such as rainfall, clouds, and rapidly developing or cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2017, Vol.46 (1), p.1-15
Hauptverfasser: Son, Le Hoang, Thong, Pham Huy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weather nowcasting comprises the detailed description of the current weather along with forecasts obtained by extrapolation for very short-range period of zero to six hours ahead. It is particularly useful when forecasting complicated processes such as rainfall, clouds, and rapidly developing or changing storms. This plays an important role for daily activities like working, traveling, daily planning, flying, etc. Weather forecast can be solved by latest radar, satellite or observational data. However, the main challenges associated with nowcasting are the flawed characterization of transitions between different meteorological structures. In this paper, we propose two novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting. The first method named as PFC-STAR uses a combination of picture fuzzy clustering and spatiotemporal regression. The second one named as PFC-PFR integrates picture fuzzy clustering with picture fuzzy rule. Those methods are equipped with advanced training processes which enhance the accuracy of predicted outputs. The experiments indicate that the proposed methods are better than the relevant ones for weather nowcasting.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-016-0811-1