A texture‐based region growing algorithm for volume extraction in seismic data

ABSTRACT We present a novel approach to automated volume extraction in seismic data and apply it to the detection of allochthonous salt bodies. Using a genetic algorithm, we determine the optimal size of volume elements that statistically, according to the U‐test, best characterize the contrast betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical Prospecting 2017-01, Vol.65 (1), p.97-105
Hauptverfasser: Orozco‐del‐Castillo, M.G., Cárdenas‐Soto, M., Ortiz‐Alemán, C., Couder‐Castañeda, C., Urrutia‐Fucugauchi, J., Trujillo‐Alcántara, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We present a novel approach to automated volume extraction in seismic data and apply it to the detection of allochthonous salt bodies. Using a genetic algorithm, we determine the optimal size of volume elements that statistically, according to the U‐test, best characterize the contrast between the textures inside and outside of the salt bodies through a principal component analysis approach. This information was used to implement a seeded region growing algorithm to directly extract the bodies from the cube of seismic amplitudes. We present the resulting three‐dimensional bodies and compare our final results to those of an interpreter, showing encouraging results.
ISSN:0016-8025
1365-2478
DOI:10.1111/1365-2478.12381